ENVIRONMENTAL EXPERTISE FROM THE GROUND UP

Drones:

Insights on the Evolving Environmental

Data Collection Platform

- a pathway paved by innovation

IPEC, October 2019

Agenda

Objective: Share knowledge on the breadth of utility granted from the adoption of innovative technology, such as UAV.

1 Overview

WHAT is a drone / UAV?

HOW are they being used?

WHY should we be using them?

Questions

What is a "Drone"?

- FAA: "small Unmanned Aircraft System", sUAS
- Unoccupied Aerial Vehicle, UAV
- May Be Autonomous (Still Requires a Pilot in Command)
- Platforms Include:
 - Multirotor
 - Helicopter
 - Fixed wing
 - VTOL

(with many hybrids of power units)

Commercial Remote Pilot License
 Part 107 Available: Oct, 2016

Regulatory Framework Safety - Best Practice - Compliance

- 14 CFR Part 107 Commercial use of small unmanned aircraft systems into the national airspace.
- Restrictions on commercial flights including, without limitation:

FAQ

- Class G airspace only w/o authorization/waiver
- Aircraft registration
- Remote pilot certification
- < 55lbs
- VLOS
- Daytime
- Over people
- From moving vehicles
- Hazardous material
- Recordkeeping

Drone Instrumentation

Optical (Zoom) Camera Thermal Infrared Camera LiDAR

- Magnetometer
- Laser gas analysis (LWIR & SWIR)
- Multispectal Camera (Narrow Band RGB, Near IR, Red Edge)

•

- Solid State Gas Analyzer (O2, H2S, CO, LEL, Cl2, NH4, etc.)
- PID/VOCs
- RAD: Geiger-Mueller, Gamma Spectrometer
- Meteorological Sensors (PTU)
- Other sensors: VX/GB, GCMS, pH paper

HOW Drones are being applied

Drone Derived Data (3-D)

- Mapping
- Photogrammetry
- Area and volume measurements
- Environmental compliance
- Project management
- Inspection and monitoring

(Notice: It's not about the drone. It's about the data that you collect in order to provide accurate Info and continue with practical knowledge.)

Maturity Model Data Info Knowledge

Terminals, Pipelines, and Refineries

Beating Heart of Petroleum Transport Infrastructure

High-Resolution Orthomosaic from Aerial Imagery

Output file is geo-spatially referenced and contains elevation data which can be imported and manipulated in any standard GIS system

High-Resolution Orthomosaic from Aerial Imagery

Digital Elevation Model (DEM) of Diked Area

Facility Site Map Recreated from sUAS Photographs

Mapping - Digital Elevation Model (DEM) of Diked Area

Spill capacity and flow modeling

Efficient Field Time

- 23 acres
- 246' AGL
- 217 images
- 1 battery
- 12:16 min:sec

Deliverable

- Tank and berm
 volume calc map
- Orthomasiac JPEG/PDF
- AutoCAD DXF file
- Annotation and accuracy report

Inspection – Thermal, Tank Fill Monitoring

Inspection - Tower Weld

-

Inspection - HDD Mud Pit Thermal Imaging / IR Monitoring Implications Stacking Multiple Data Layers Simultaneously

IR Detection

High-Res Aerial of Mud Spill from Pump Truck

3D Model of Mud Spill from Pump Truck

Seep Identification – Visual Light

Field Conditions

- Early AM lighting
- Low lighting in lower elevations
- Homogeneous colored terrain
- Steep, gravel banks
- Hard to access
- Low temps near body of water

Seep Identification – Thermal (Infrared)

Radiometric Camera Temperature Sensitivity 0.1 °C

Remediation System Monitoring

Scale Approximate

Inspection – Indoor flights

ELIOS 2

Inspection – Methane detection (FLIR)

KML Output

Benefits of Drones to Petro Ind

- **Mapping** Terminal facilities
 - Site model updates
 - Construction monitoring
 - Asset tracking
- Inspection Tanks and Pipes
 - Safety
 - Access
 - Efficiency

Documenting Site Activities and Conditions – EAP

- Regulatory requirements
- Security
 - Threat identification and communication

Why use a Drone?

3 Reasons: Safer. Cheaper.

Better.

Fortune, 2016

Reason 1: Best Available Technology

- Reduced exposure to site hazards:
 - Biologicals
 - Temperature extremes
 - Slips/trips/falls
 - Fatigue
 - Security risks
- Access to locations that would otherwise be too hazardous or impossible

Reason 2: Digital Transformation

Digitization – the fourth industrial revolution

The fourth industrial revolution is projected to have a high impact across many industries.

The first industrial revolution saw the introduction of steam engines and mechanization of manufacturing. The second saw the advent of electricity, while the third brought about the full automation of industrial processes, often using software or robotics. The fourth industrial revolution represents a fusion of the preceding three, with digital systems being used to monitor and control physical and biological systems.

By 2022, 60% of global GDP will be digitized.

Yet today, only 45% of people trust that technology will improve their lives.

Every sector is beginning to face deep questions about what the implications of this transformation will be.

https://www.weforum.org/whitepapers/our-shared-digital-future-responsible-digital-transformation-board-briefing-9ddf729993

Take Away - Digital Transformation

"The future is already here – it's just not very evenly distributed." – William Gibson

 BP announces industry-first, continuous methane measurement programme

Release date: 10 September 2019

 With all these new technologies, inspections that used to take seven days will now only take 30 minutes, BP said.

https://www.bp.com/en/global/corporate/news-and-insights/bp-magazine/bp-deploys-continuous-methane-emissions-measurement.htm

Reason 3: Readiness

Greatest advantages and benefits of using sUAS are attained by those who need it most in Petro Ind.

- Health and safety (societal)
- Environmental management
- Operations management (economical)

The limit of use-cases has not been defined but general drone use practices are being firmly established by leaders in the industry.

THANK YOU

Questions?

Daniel Bochicchio Geologist, Regional sUAS Operations Manager dbochicchio@GESonline.com 828.230.6980

Groundwater & Environmental Services, Inc.