Advanced Site Characterization of Salt Contaminated Lands

J. Berton Fisher & Blake P. Redden $\lambda \chi$ Lithochimeia, LLC Tulsa, OK

26th International Petroleum Environmental Conference Site Characterization & Forensic Geochemistry Session October 8, 2019

Pathways of Salt Movement

Salt Contamination Assessment

Injury

- Extent and Severity of Contamination
- Potential of Contamination to Spread

Damages

- Land Use and Land Capability
- Receptors
- Remedial Measures
- Causation
 - Source of salt

Salt Site Assessment Tools

Vegetation

Salt Crusts & Weathering

Erosion and Corrosion

Field Screening / Sampling

Electrical & Electromagnetic Methods

- Used where changes in electrical resistivity define a target
- Metal detection
- Metallic ores
- Saltwater
- Acid rock drainage
- Water saturated vs. unsaturated pores
- Voids (tunnels & karst)

Is Salt Water Conductor of Electricity ?

Most frequently used for salt contamination investigations

Spatial Distribution (i.e. mapping)

• Frequency Domain Electromagnetic

Depth Distribution

- Resistivity
- Time Domain Electromagnetic

Frequency domain electromagnetic

Old methods – new technology

- Known and used from early to mid-20th century
- Cumbersome until recently:
- (1) Reliable electronics
- (2) Computer controlled data acquisition
- (3) Sub-meter GPS

Frequency domain electromagnetic

Frequency Domain Electromagnetic Survey

Distance

- Oscillating EM field penetrates ground
- Eddy currents induced
- Secondary EM field produced by eddy currents
- Instrument measures secondary EM field
- Strength of secondary EM field increases with increasing electrical conductivity of soil/objects

20

Release of Oilfield Brine to Surface Drainage: Creek Co.

Release of Oilfield Brine to Drainage

Study Area

Release of Oilfield Brine to Drainage

-01 × N-03 × N-05 × N-07 × N-09 × N-41 × N-43 × N-45 × N-47 × N-49 × N-21 × N-23 × N-25 -01 • M-03 • M-05 • M-07 • M-09 • M-11 • M-13 • M-15 • M-17 • M-19 • M-21 • M-23 • M-25 -01L-02L-03L-04L-05L-06L-07L-08L-09L-10L-11L-12L-13L-14L-15L-16L-17L-18L-19L-20L-21L-22L-23L-24L-25L-26L -01 K-03 × K-05 × K-07 × K-09 × K-11 × K-13 × K-15 × K-17 × K-19 × K-21 × K-23 × K-25 -01 J-02 J-03 J-04 J-05 J-06 J-07 J-08 J-09 J-10 J-11 J-12 J-13 J-14 J-15 J-16 J-17 J-18 J-19 J-20 J-21 J-22 J-23 J-24 J-25 J-26 J-2 01 1-02 1-03 1-04 1-05 1-06 1-07 1-08 1-09 1-10 1-14 1-12 1-13 1-14 1-15 1-16 1-17 1-18 1-19 1-201-29 1-22 1-23 1-24 1-25 1-26 I-01 ◇ H-03 → H-05 ◇ H-07 ◇ H-09 ◇ H-41 ◇ H-43 ◇ H-45 ◇ H-47 ◇ H-49 ◇ H-21 ◇ H-23 ◇ H-25 G-01 G-03 G-05 G-07 G-09 G-11 G-13 G-15 G-17 G-19 G-21 G-23 G-25 -01F-02F-03F-04F-05F-06F-07F-08F-09F-10F-11F-12F-13F-14F-15F-16F-17F-18F-19F-20F-21F-22F-23F-24F-25F-26F E-01 0 E-03 0 E-05 0 E-07 0 E-09 0 E-11 0 E-13 0 E-15 0 E-17 0 E-19 0 E-21 0 E-23 0 E-25 ◎ D-03 ◎ D-05 ◎ D-07 ◎ D-09 ◎ 0-41 ◎ D-43 ◎ D-45 ◎ D-47 ◎ D-49 ◎ D-21 ◎ D-23 ◎ D-25 ◎ C-01 · C-03 · C-05 · C-07 · C-09 · C-11 · C-13 · C-15 · C-17 · C-19 · C-21 · C-B-01 ◇ B-03 ◇ B-05 ◇ B-07 ◇ B-09 ◇ B-11 ◇ B-13 ◇ B-15 ◇ B-17 ◇ B-19 ◇ B-21 ◇ B-A-01 • A-03 • A-05 • A-07 • A-09 • A-11 • A-13 • A-15 • A-17 • A-19 • A-21 • A-1°41' 2°41' 100 200 400 500 ft ExpertGPS Basemap: mapbox, OpenStreetMap

Navigation Grid

Release of Oilfield Brine to Drainage

Contoured Data

About 6 hours start to finish

(mS/m)

Conductivity

Terrain

What about depth?

Change frequency and transmitter-receiver spacing

Investigation Depth

is a

Function of Frequency & Transmitter/Receiver Separation

1-m / 0.5-m spacing

Instrument	Freq. (kHz)	Depth (m)
EM-38	14.5	1.5
EM-31	9.8	5.5
EM-34	6.4	10
EM-34	1.6	20
EM-34	0.4	40

EM-31

3.66-m spacing

10-, 20-, 40-m spacing

Electromagnetics – Time Domain

Receiver loop Transmitter loop induced eddy currents at progressively later times after turnoff

Acid-Generating Mine Waste

Descriptor - include initials, /org#/date

Some basic electricity for galvanic coupling

OHM's LAW current flo V = I x R (Voltage = Current multiplied by Resistance) R = V / I (Resistance = Voltage divided by Current) I = V / R (Current = Voltage Divided by Resistance)

Battery - energy supply, pushes electrons around the circuit

Resistor - resists the flow of current

Voltmeter measures the potential difference <u>between</u> <u>two points</u>

Current meter measures the current flow <u>at a point</u>

Apparent Resistivity and Electrode Spacing

As electrode spacing increases, we "see" deeper and deeper.

At some point the upper layer will have much less effect than the bottom layer

Current refraction

Refraction changes the distribution of current in a layered subsurface

Ratio of V/I changes ∴ can measure change in resistivity with depth

ExpertGPS

0.25 mi

- Top of water easily imaged
- Bedrock topography easily imaged large resistivity contrast with sandy aquifer

Since water saturation in the aquifer is 100% and salinity is constant, variations in resistivity reflect sedimentary fabric or composition changes

	IMME	X, LLC	
Job Code	Rhodes	Survey Date	Apr 19, 2018
Project Site	Woods County, OK	Instrument	SuperSting R8
Approved By		Software	EarthImager 2D
Data File	A1-A3-merged trial4 Scaled trial3.stg		

Combining FDEM & Resistivity

How deep is the salt contamination?

The release: Kingfisher County, OK

FDEM Survey (Geonics EM-31)

0.

30-meters 60-meters

Electrical Resistivity Profile (VES)

EW-03 Conductivity Section

Conclusions

Electrical geophysics rapidly provide lateral and vertical extent of salt contamination in the shallow subsurface

Visual evidence of salt contamination provides a point of beginning for electrical geophysical surveys

Actual soil and/or water samples must still be collected to ground truth geophysical data

QUESTIONS?

