
Onshore Environmental Research and the Concept of Generic Drilling Fluid Patrick Tyczynski, John Candler M-I SWACO, a Schlumberger company

- EPA Research and Development Report
 - "Acute Toxicity of Eight Drilling Fluids to Mysid Shrimp (Mysidopsis bahia)" / EPA-600/3-84-067

EPA-600/3-84-067

The generic drilling fluid concept was developed jointly by EPA's Region II and industry to provide EPA information on the impact of drilling fluids and components of the fluids released into the environment without requiring each drilling operator to perform repetitious toxicity tests and chemical analyses. The eight generic drilling fluids include virtually all water-based fluids used on the U.S. Outer Continental Shelf. Only major components of the generic fluids are specified and additional information concerning the effects of speciality additives must be submitted to EPA prior to their discharge (Petrazzulo, 1983). The generic fluid concept is now being employed by EPA Regional Offices involved in the permitting process (EPA, 1983).

EPA-600/3-84-067

		Composition	
Drilling Fluid	Source	Component	Concentration
EPA-83-001, KCI Polymer Mud	Chromalloy	KCI Drispac (Super-Lo) X-C Polymer Barite Starch	50 0 grams (g) 0.5 g 1.0 g 283.2 g 2.0 g
		Seawater	257 6 milliliters (ml)
EPA-83-002,	IMCO Services	Attapulgite	30.0 pounds per barrel (ppbbl)
Seawater Lignosulfonate Mud		Chrome Lignosulfonate Lignite Polyanionic Cellulose Caustic Barite	15.0 ppbbl 10.0 ppbbl 0.25 ppbbl To pH 10.5-11.0 To bring mud weight to 17-18 pounds per gallon (ppg)
		Seawater	As needed
EPA-83-003, Lime Mud	Hughes	Bentonite Lime Barite Chrome Lignosulfonate Caustic Lignite Distilled water	20.06 g 5.01 g 281.81 g 15.04 g 1.00 g 8.02 g 257.04 ml
EPA-83-004, Non-dispersed mud	Newpark Drilling Fluids	Bentonite Acrylic Polymer (for suspension) Acrylic Polymer (for fluid loss control) Barite Deionized Water	13.0 ppbb/ 0.5 ppbb/ 0.25 ppbb/ 190.7 ppbb/ 299.6 ppbb/

EPA-600/3-84-067 Project Summary

EPA-83-005, Spud mud	NL Baroid	Bentonite Lime Barite Seawater/Freshwater Caustic	12.5 ppbbl 0.5 ppbbl 50.0 ppbbl 1.0 bbl To pH 10.0
EPA-83-006, Seawater/Freshwater Gel Mud	Milchem	Bentonite Polyanionic Cellulose Sodium Carboxymethyl Cellulose Barite Sodium Hydroxide Seawater/Freshwater, 1:1	20.0 ppbbl 0.50 ppbbl 0.25 ppbbl 20.0 ppbbl To pH 9.5 As needed
EPA-83-007, Lightly Treated Lignosulfonate Mud	Magobar Dresser	Bentonite Chrome Lignosulfonate Lignite Soda Ash Carboxymethyl Cellulose Barite	20.0 ppbb/ 5.0 ppbb/ 3.0 ppbb/ 1.0 ppbb/ 0.5 ppbb/ 178.5 ppbb/
EPA-83-008, Freshwater Lignosulfonate Mud	Dowell	Bentonite Chrome Lignosulfonate Lignite Carboxymethyl Cellulose Sodium Bicarbonate Barite Deionized Water	15.0 g 15.0 g 10.0 g 0.25 g 1.0 g 487.0 g 187.0 ml

EPA-600/3-84-067 Project Summary

- Technology limit
- Product development
- US Offshore / World Bank
- Thousands of tests
 - Mysidopsis bahia
- Comparison testing
- Consistency and accuracy

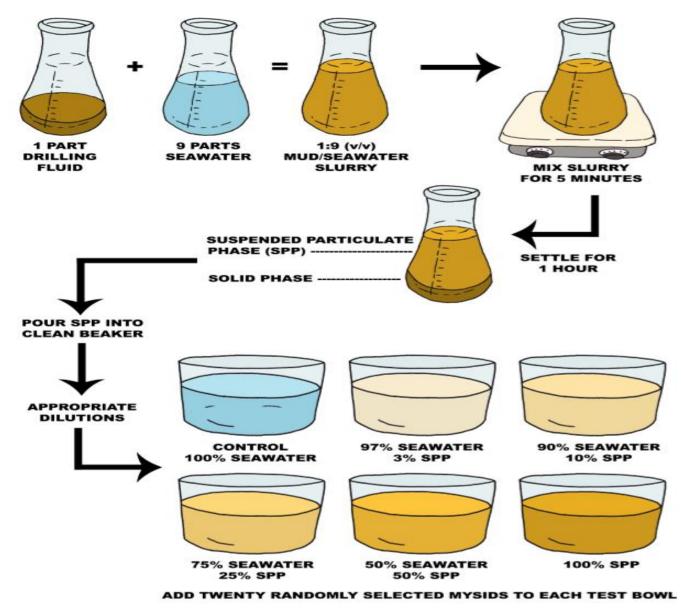
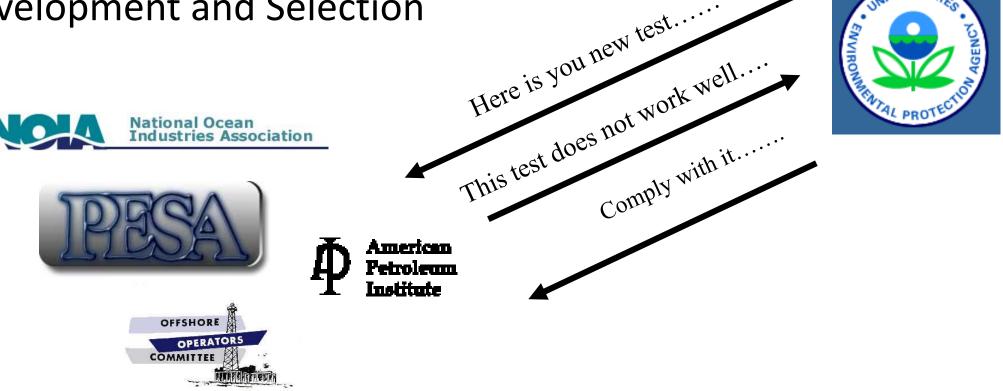
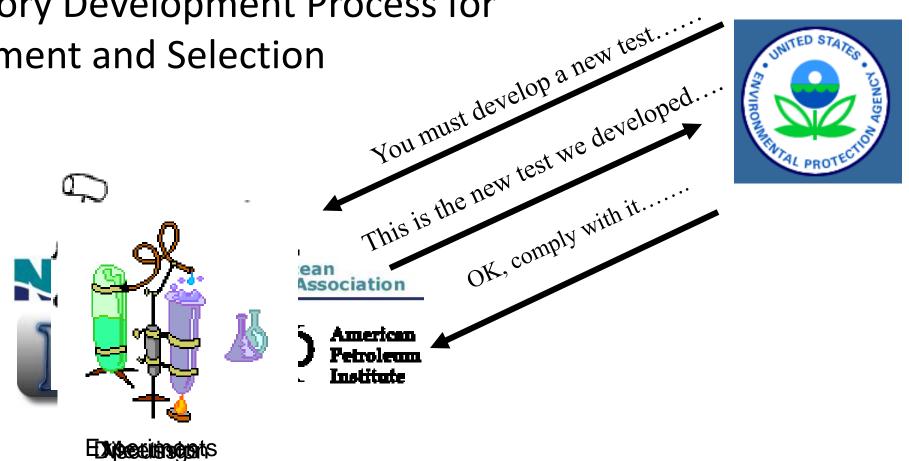
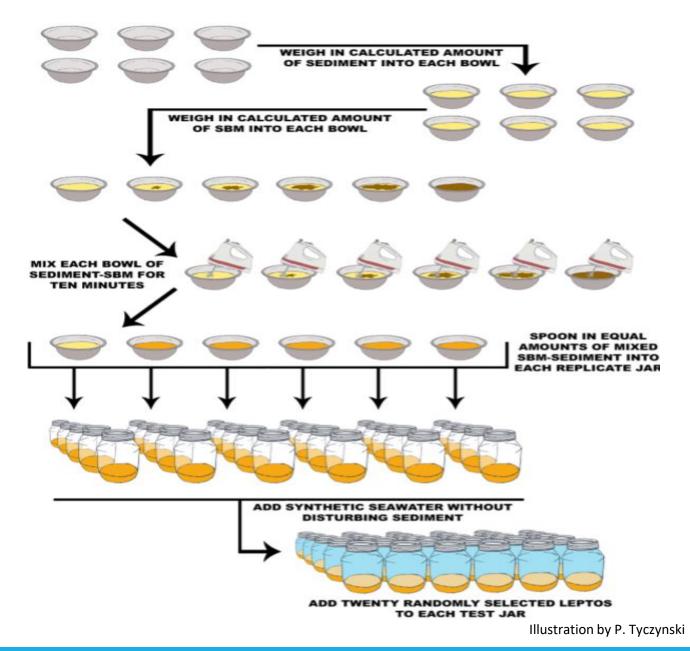




Illustration by P. Tyczynski

• OLD Regulatory Development Process for Test Development and Selection

NEW Regulatory Development Process for Test Development and Selection


- SBM Workgroup
 - Lessons learned helped develop the reference drilling fluid and the toxicity test
 - Focus on variability
 - Set technology limit

<u>Sediment Toxicity</u>. The ratio of the 4-day LC_{50} of C_{16} - C_{18} internal olefin reference drilling fluid divided by the 4-day LC_{50} of the drilling fluids, removed from cuttings at the solids control equipment, shall not exceed 1.0. Monitoring shall be performed at least once per month on drilling fluids which meet the stock limitations for a C_{16} - C_{18} internal olefin. For drilling fluids which meet stock limitations for C_{12} - C_{14} ester or C_8 ester, monitoring shall be performed at least once per well at the end of drilling with non-aqueous based drilling fluids. See Appendix A of this permit and sampling protocol in Part I.D.9.

The reference drilling fluid shall be formulated from C₁₆ - C₁₈ internal olefin and meet the criteria listed in Table 1 of 40 CFR Part 435, Subpart A, Appendix 8. A uniform emulsifier package shall be used for all formulations of reference drilling fluids.

GMG290000

- Sediment toxicity
- Numeric pass fail not an option
- Toxicity ratio reference mud developed as the solution
- Leptocheirus plumulosus

Onshore Options

Offshore

Onshore

Onshore Options

- Generic Onshore Reference Drilling Fluid
- Factors
 - Drilling Fluid
 - Chlorides
 - Electrical Conductivity
 - Soil Science

Onshore Options

- Drilling fluid technology
 - WBM, OBM, SBM
 - Onsite disposal options
- Similar concepts to build on
- Opportunities for coordinated effort
 - Industry workgroups
 - Organizations: PESA, IPEC, SPE, etc

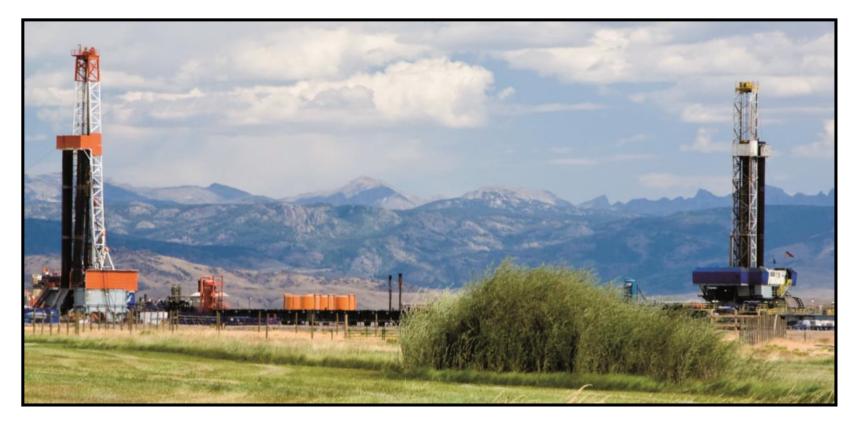
Maximum Discriminatory Power

Practicality of Implementation

Repeatability

Ecological Relevance Ranking of Known Substances in Order of Environmental Impacts

- Develop options
 - Drilling fluid and testing
- Industry workgroups
 - Evaluate the options that meet the target
- Consistent evaluation
 - Use the tools to evaluate the technologies as has been done offshore


Generic Drilling Fluid | Reference Drilling Fluid | Onshore Options

Global Approach

- Generic Drilling Fluids Under Development
 - OBM
 - SBM
 - WBM
- Test Methods Under Development
 - Biological Tests Worms, Fish, Plants
 - Chemical Tests Soil Quality, EC, SAR, Heavy Metals, TPH

Environmental advances are achieved through research, regulatory development, product testing and environmental management programs designed to support regulatory compliance