Water Management For Shale Plays

D. Steven Tipton, PE, SPEC
Water Management Began With Oil and Gas Production

- Water is produced along with oil and gas from nearly every well since petroleum was discovered.
- Water is the most common and heavily used fluid in the petroleum industry.
- Water is used as a base fluid in drilling, completion, and production operations.
- Water is mixed, produced, cleaned, recycled, and injected.
- *Water’s use, protection, and disposal are emotionally charged subjects in many communities.*

Drake Well 1859
Source: PA Department of Conservation and Natural Resources
History of Water Disposal

• Into the middle of the 20th century produced water was flowed:
 – Onto the ground
 – Into lakes and streams
 – Into unlined evaporation pits (Lined evaporation pits are still in use today)

• Today in the US over 98\% of produced water is disposed of in disposal wells or used for waterflooding

• Waterflooding
 – The first waterflood in the US was accidently started at Pithole City, PA in 1865
 – Started in Oklahoma and Texas in 1930’s
 – Became wide spread in the 1950’s
Water Management Cycle

- **Water source**
 - Subsurface aquifers
 - Rivers, lakes or ponds
 - Rural or urban water supplies
 - Gray Water
 - Acid Mine Drainage

- **Water transport**
 - Pipeline
 - Trucking

- **Water storage**
 - Frac Tanks (500 BBLS)
 - Modular Tanks (up to 60,000 BBLS)
 - Portadam (size as required)
 - Pits or ponds (100,000+ BBLS)

- **Water treatment and reuse**
 - Biocides
 - Aeration
 - Aerobic bacteria
 - Settling
 - Filtration
 - Flocculation
 - Distillation
 - Crystallization

- **Water disposal**
 - Evaporation
 - Water disposal wells
Significance of Water to Shale Completions

More than ever, water is an integral part of the success of oil and gas operations in Shale Plays.

Consider this:

– No Water
– No Hydraulic Fracturing
– No Oil and Gas Resource Plays
Water Management Plan Components

- Water Management Plan
 - Company’s acreage position
 - Water sources
 - Regulatory constraints
 - Environmental constraints
 - Cultural constraints
 - Fracturing fluids
 - Water volumes required
 - Storage capacity required
 - Refill time required
 - Layout infrastructure
 - Geotechnical investigation
 - Design facilities
 - Construction plan

Source: B. Pribish, 2015 private communication
Infrastructure

• Infrastructure planning
 – Plan placement of
 • Fresh water storage
 • Produced water treatment facilities
 • Disposal facilities
 • Buried HDPE pipelines
 – Practical limit of lay-flat is about 3 miles

• Flexibility
 – Move fresh water to any storage facility
 – Move treated and produced water from any treatment and disposal facility to any other facility
 – Delivery to and from each facility by both pipelines and trucks
Primary Water Sources

- Subsurface Aquifers using water wells
- Ground Water from naturally occurring or man made ponds
Water Needs and Costs

• Increased water demand due to
 – Drilling extended lateral lengths to 12,000 ft. or longer
 – Pad drilling
• Fracture fluid volumes
 – 300,000 to 1,000,000 BBLS per well
• Fresh water cost
 – Permian Basin
 • $0.50 to $0.75 per BBL
 – Anadarko Basin
 • $0.25 to $0.50 per BBL
• Costs for produced water treatment
 – $0.25 to $1.00 per BBL using aerobic bacteria and aeration
 – Other treatment costs may be higher

Source: ALL Consulting, 2016
Produced Water Storage Facilities

- Preferred designs - 1 to 6 lined 300,000 to 500,000 BBL impoundments
- Recommended Produced Water Impoundment liners:
 - Gas vent strips made of geotextile material
 - Geotextile layer
 - Secondary 40 mil black liner
 - Geotextile layer
 - Leak detection system (sump)
 - Geocomposite layer
 - Washed pea gravel
 - Perforated Pipe
 - Primary 40 mil white liner
- Pits connected by 12” HDPE equalization pipes
- Suction pipes installed in the clean brine impoundment
Impoundment Sizing and Design

- Impoundment designs based on operators needs:
 - Type of water stored
 - Completion schedule/water forecast
 - Water volume from production
 - Water recycling/treatment plan
 - Disposal capacity

- Ideal Design:
 - Can store fresh or produced water
 - Effective solids and bacteria removal
 - Designed for lowest cost
 - Combined storage volume from 300,000 to 2 million BBL

Source: ALL Consulting, 2018
Impoundment Construction

Source: ALL Consulting, 2018
Water Pit Liner Installation

Source: ALL Consulting, 2018

Source: ALL Consulting, 2018
Liner Installation/Completed Pits

Source: ALL Consulting, 2018

Source: ALL Consulting, 2018
Pipeline Design and Installation

• Water transport by pipeline to or from
 – Water source(s)
 – Existing water storage
 – Planned storage and treatment facilities
 – Salt water disposal wells
• Multidirectional water flow is a necessity
 – To move either fresh or salt water
 – To transport water from multiple facilities
• Benefits of developed pipeline systems
 – Reduced trucking
 – Decreased long-term costs
 – Increased safety & reduced risk of spills
• Automation
 – Allows control of water remotely
 – Decreases in-field man power

Source: ALL Consulting, 2018
Frac Water – Recycling Objectives

- Economically produce clean brine water from produced water that can be used as a base fluid for hydraulic fracturing
 - Process must be able to remove hydrocarbons, gelling agents, metals, H_2S, iron sulfide, bacteria, boron, and suspended solids
 - Process must be able to handle variable qualities and quantities of inlet water
 - For most operations equipment must be mobile and have a compact footprint
 - Water treatment must be economical when compared to the acquisition and disposal of fresh water
Before Recycling Water

• What Do We Need to Know
 – Type of fracturing fluid that is being used
 • Slickwater
 • Linear gel
 • Cross linked gel
 – The chemical analysis
 • For fresh water
 • For flowback/produced water
 • For treated water
 – Regulations governing
 • Produced water transportation
 • Produced water storage
 • Treated water storage
 • Waste stream disposal
 – Economic constraints
 • Cost of water storage (approximately $2.00/BBL for initial installation)
 • Cost of water transportation ($0.50/BBL to move water from storage to frac)
 • Cost of water processing
 • Cost of waste stream disposal
Drivers for Recycling

• Reduce demand on limited freshwater resources

• Reduce injection volumes
 – Reduce injection costs
 – Limited disposal zones for salt water disposal wells
 – Induced Seismicity concerns

• Reduce water costs

Source: ALL Consulting, 2018
Recycling Challenges

• Produced water
 – Treatment must be economically feasible
 – Minerals can interfere with friction reducers or frac gel
 – Quality varies widely
 – Minerals can cause scale

• Environmental regulations
 – Have become more stringent
 – In most states flowback, recycle or produced water pits have to be permitted in some fashion
 – Oklahoma requires design, certification, permitting, and construction supervision by a registered professional engineer
A Basic Approach that Works

- Combine at the same facility
 - Produced water treatment
 - Water storage
 - SWD well

- Separate pipelines
 - For fresh water
 - For produced water
 - For clean brine

- Tank battery to remove solids and separate oil

- Treatment system to provide a clean brine

- Injection well for produced water that cannot be recycled

- Multiple facilities strategically placed

Source: ALL Consulting, 2017
Treatment System

• Treatment system consists of:
 – A tank battery
 – A series of lined impoundments
 • Improves treatment
 • Provides ample storage
 – Aeration and microbial treatment
 – Equalization pipes
• Results in a clean brine suitable for reuse

Source: ALL Consulting, 2016
Treatment/Disposal Tank Battery

• Located adjacent to
 – Injection wells
 – Treatment pits

• Removes
 – Solids
 – Oil (down to 30 ppm)

• Automated to send water to
 – Treatment pits
 – Injection well
 – Both

• Typically coupled with 2 H-pumps controlled by variable speed drives (VSDs)

Source: ALL Consulting, 2017
• Aeration
 – Increases dissolved oxygen levels in water
 – Sustains aerobic bacteria
 – Eliminates hydrocarbons and other organics from the water
 – Prevents water from “Flipping”
 – Reduces the proliferation of Anaerobic Bacteria

• Aerobic bacteria
 – Control anaerobic bacteria
 – Managed with biocides during frac operations

• Anaerobic bacteria
 – More problematic (e.g., SRB’s - H₂S producing bacteria and APB’s - acid producing bacteria)
 – More expensive to manage with biocides

Source: ALL Consulting, 2017
Salt Water Disposal Considerations

• Increase in seismicity
 – Decreased injection allowables
 – Operators are choosing to limit injection
 – Alternate disposal zones are limited
 – Operators are exploring recycling as a way to reduce injection volumes

• Trucking produced water for disposal
 – Expensive
 – Can create adverse community impacts

• Transporting produced water through pipelines
 – Cost effective
 – Environmentally sound

Source: ALL Consulting, 2017
Benefits of Good Water Management Plan

• Ensures adequate water for completions
• Allows for
 – Unexpected changes in the completion schedule
 – Changes in frac water volumes
• Reduces fresh water demand
• Provides options for managing produced water
• Provides options for water treatment
• Reduces SWD well injection volumes
• Limits trucking for produced water disposal

Source: ALL Consulting, 2018
Keys to Success

• Provide a cost-effective approach to water management that
 – Supplies sufficient water supply for completions
 – Reduces fresh water demand
 – Recycles produced water
 – Disposes of excess water

• Provide flexibility to respond to unexpected changes in
 – Schedules
 – Need to move water from one facility to another
 – Injection well use or problems
 – Equipment

• Provide simple operations using
 – Automated controls
 – Uncomplicated treatment systems
 – Limited operator involvement in day-to-day operations
 – Minimal operator training

• Provide a process that recovers capital investment in three years or less.
Contact Information

D. Steven Tipton, P.E., SPEC
Senior Consulting Engineer
ALL Consulting
Tulsa, OK
918-230-2161
stipton@all-llc.com

Citation Information: