# BENEFICIAL USE OF TREATED PRODUCED WATER



Photo copyright Boston.com



ARE WE ONE SMALL STEP OR ONE GIANT LEAP AWAY?

Rick McCurdy RMc<sup>3</sup> Consulting LLC

International Petroleum Environmental Conference October 7-9, 2019 San Antonio, Texas







### **AGENDA**

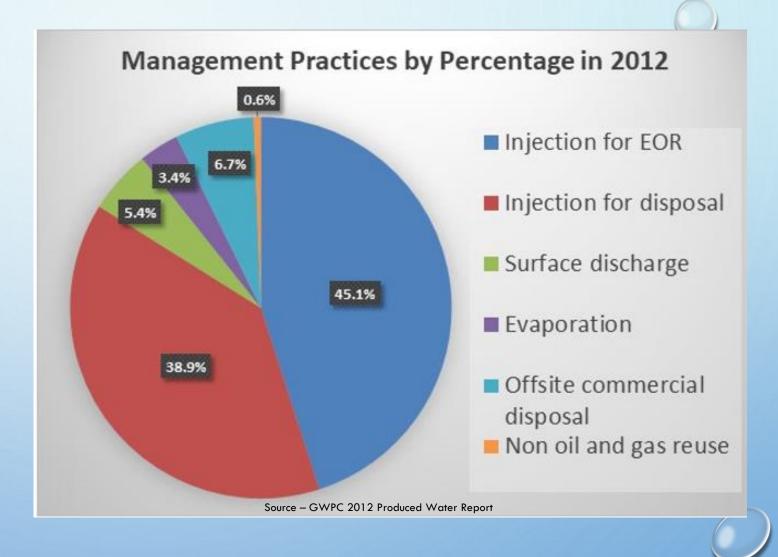
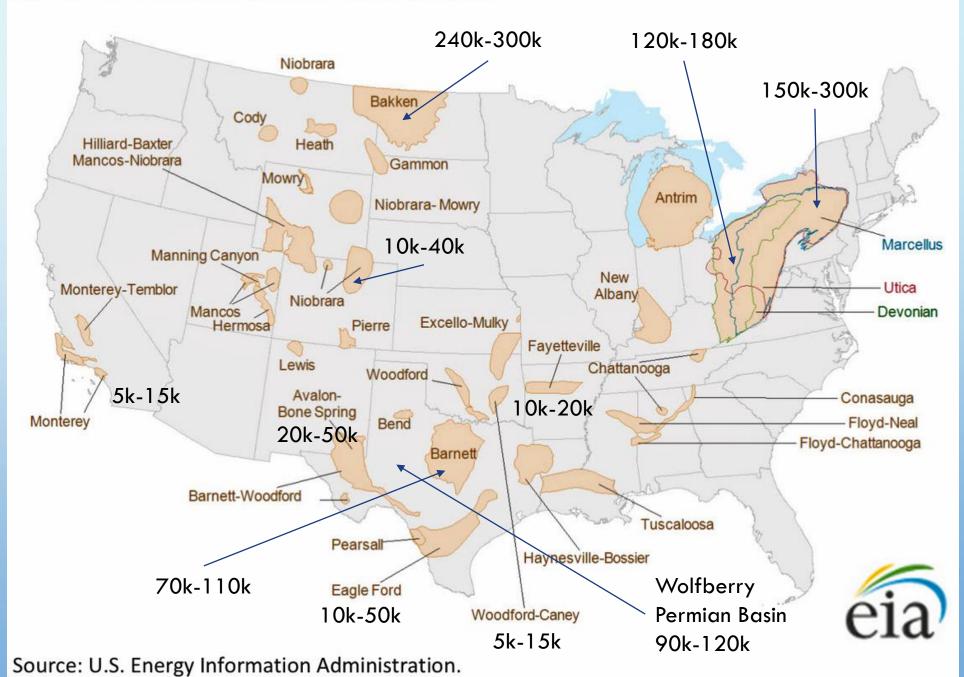

- PRODUCED WATER
  - AVERAGE QUANTITIES
  - TDS BY FORMATION / PLAY
  - GENERAL COMPOSITION
- CURRENT TREATMENT TECHNOLOGY
  - REVERSE OSMOSIS
  - VD/MVR
  - CRYSTALLIZATION
- POTENTIAL GAME CHANGERS
  - MEMBRANE DISTILLATION
  - GRAPHENE NANOMATERIALS
- EXCITING TIMES



Photo copyright Patriot Environmental

# AVERAGE QUANTITIES


- 2.4 BILLION GALLONS PER DAY
  - (57.1MM BBL/D)
  - 25.6 BILLION 12oz CANS/D
  - ENOUGH TO REACH TO THE
     MOON AND BACK 8 TIMES —
     EVERY DAY





# TDS RANGES FOR VARIOUS OIL AND GAS PLAYS

Figure 2. U.S. Lower 48 tight oil and shale gas plays



# **GENERAL CONSTITUENTS OF PRODUCED WATER**

- SALT (PREDOMINANTLY SODIUM CHLORIDE)
- HARDNESS (CALCIUM, MAGNESIUM, BARIUM, STRONTIUM)
- SULFATE
- METALS (IRON, MANGANESE)
- NATURALLY OCCURRING RADIOACTIVE MATERIALS (NORM)
- ORGANICS
- DISSOLVED GASES (CH<sub>4</sub>, CO<sub>2</sub> AND POSSIBLY H<sub>2</sub>S)
- COMPLETION / WORKOVER / MAINTENANCE CHEMICALS
- TRANSFORMATIVE CHEMICALS / COMPOUNDS



Photo from reliableoneresources.com

# WE DON'T KNOW EVERYTHING THAT MIGHT BE IN PRODUCED WATER

- 1,000+ POTENTIAL CHEMICALS USED IN HF (PER FRAC FOCUS)
- PRODUCTION / WORKOVER CHEMICALS
- TRANSFORMATIVE BY-PRODUCTS
  - $2HCL + CaCO_3 \longrightarrow CaCL_2 + H_2O + CO_2$
- LACK OF APPROVED ANALYTICAL TECHNIQUES FOR HIGH TDS MATRIX



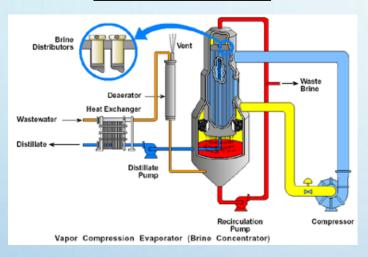
# CURRENT TREATMENT TECHNOLGIES

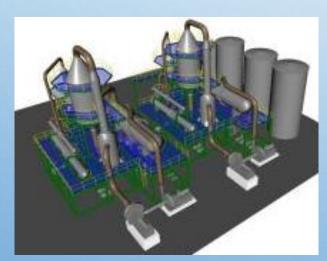
- REVERSE OSMOSIS
- CONCENTRATION &
   CRYSTALLIZATION

#### **REVERSE OSMOSIS**

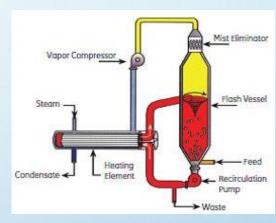
- USES PRESSURE TO PUSH WATER
   MOLECULES THROUGH A
   PERMEABLE MEMBRANE
- REQUIRES EXTENSIVE PRETREATMENT,
   BUT REMOVES ALL
   MINERALS, SALTS AND METALS
- EASY TO FOUL MEDIA
   (HYDROCARBONS AND BACTERIA ARE TROUBLESOME)
- INEFFICIENT WITH BRINES EXCEEDING
   50K TOTAL DISSOLVED SOLIDS (TDS)




Photo courtesy of R. McCurdy




www.degremont-technologies.com


# BRINE CONCENTRATOR AND CRYSTALLIZER

#### **Brine Concentrator**





#### **Brine Crystallizer**

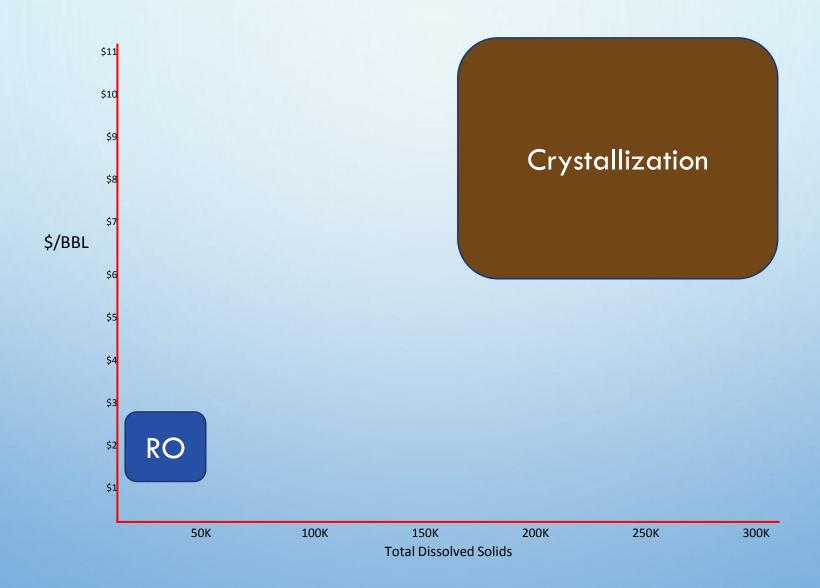




## **POWER DEMAND**



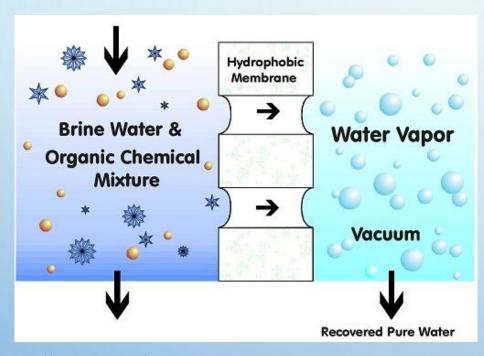
Public domain photo


- VD/MVR & ZLD PLANTS TYPICALLY NEED 6-8
   KWH / BBL WATER PROCESSED
- 50,000 BPD PLANT WOULD USE 109.5-146.0
   GWH/YEAR
- AVG HOUSEHOLD CONSUMPTION IS 10,932 KWH/YEAR<sup>1</sup>
- AVG HOUSEHOLD IN OKLAHOMA HAS 2.55 PEOPLE<sup>2</sup>
- A SINGLE 50,000 BPD PLANT WILL HAVE THE ENERGY DEMAND OF A CITY WITH A POPULATION OF 25,000-34,000 PEOPLE!

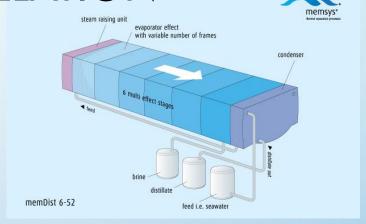
# WASTE / PRODUCT GENERATION

| Capacity |      | Products and waste         |                          |                    |                                      |
|----------|------|----------------------------|--------------------------|--------------------|--------------------------------------|
| bbl/day  | MGD  | Filter Cake,<br>(tons/day) | Distillate,<br>(bbl/day) | Salt<br>(tons/day) | CaCl <sub>2</sub> Brine<br>(bbl/day) |
| 5,000    | 0.2  | 53                         | 4,000                    | 107                | 1,000                                |
| 50,000   | 2.1  | 533                        | 40,000                   | 1,066              | 10,000                               |
| 100,000  | 4.2  | 1,066                      | 80,000                   | 2,132              | 20,000                               |
| 200,000  | 8.4  | 2,132                      | 160,000                  | 4,264              | 40,000                               |
| 300,000  | 12.5 | 3,198                      | 240,000                  | 6,396              | 60,000                               |

Numbers based off of typical composition of a produced water that is relatively high in salinity with a moderate level of hardness.


# **ECONOMICS**




# POTENTIAL GAME CHANGERS

- MEMBRANE DISTILLATION
- GRAPHENE NANOMATERIALS

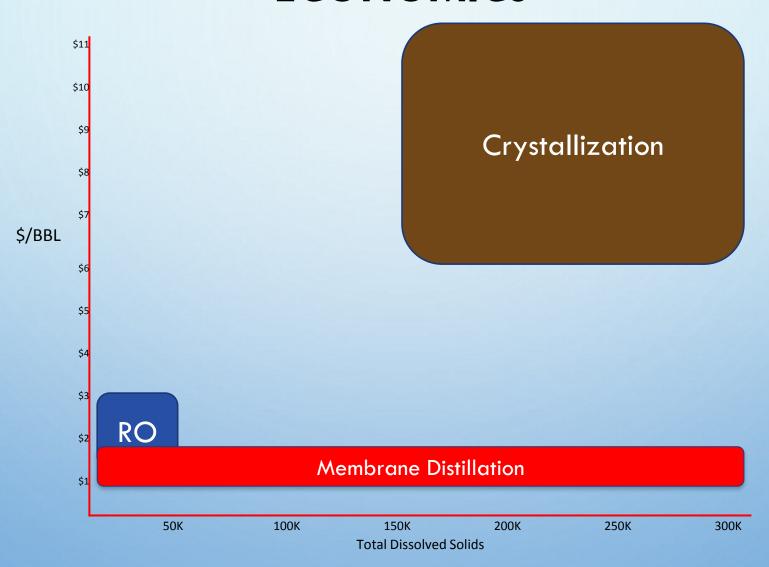
# MEMBRANE DISTILLATION



http://www.kmxcorp.com/water\_chemical\_purification.php?division=Technologies&area=Membrane% 20Distillation&page=Introduction

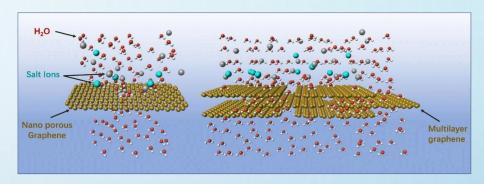


http://www.memsys.eu/products.html

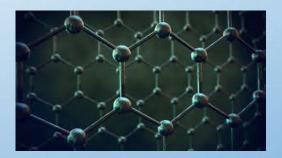



### MEMBRANE DISTILLATION

- PROS
  - MEMBRANE IS RESISTANT TO FOULING
    - ONLY PRETREATMENT IS OIL REMOVAL
    - HARDNESS AND BACTERIA HAVE NOT SHOWN TO BE TROUBLESOME
  - LOW ENERGY DEMAND
  - CAN HANDLE HIGH TDS BRINES
  - CAN UTILIZE WASTE HEAT SOURCES
  - POTENTIAL TO PROVIDE RECOVERY OF A DISTILLATION UNIT AT THE COST OF AN RO


- CONS
  - OIL CAN FOUL MEMBRANES
  - WHILE MORE ECONOMICAL THAN A
     VD/MVR PROCESS AND MUCH LESS
     ENERGY INTENSIVE STILL CANNOT
     COMPETE COST WISE WITH MAJORITY OF
     CLASS II SWD OPTIONS; HOWEVER,
     WASTE HEAT CAN SWING THE PENDULUM

# **ECONOMICS**




# **GRAPHENE NANOMATERIALS**

- EXTRAORDINARY HIGH SURFACE AREAS
- DURABLE
- ATOMIC THICKNESS
- NANO-SIZED PORES
- CAN BE CONSTRUCTED TO BE REACTIVE TO BOTH POLAR AND NON-POLAR CONTAMINANTS



https://ars.els-cdn.com/content/image/1-s2.0-S0011916417310974-fx1\_lrg.jpg



Copyright The University of Manchester

# EXCITING TIMES IN THE PRODUCED WATER SPACE

- NEW MEXICO STATE UNIVERSITY AND NEW MEXICO ENVIRONMENT DEPARTMENT MOU –
   PRODUCED WATER RESEARCH CONSORTIUM
- FOCUS WILL BE ON ECONOMICAL TREATMENT OF PRODUCED WATER FOR BENEFICIAL USE OUTSIDE OF THE OILFIELD

#### Colorado State University Washington University University University of of Connecticut Cincinnati Berkeley Carnegie Mellon NETL LBNL Stanford University University of Southern EPRI California **New Mexico** Univeristy of California, State University Los Angeles National Laboratory NREL Colorado School UC Irvine Consortium Member of Mines Rice Georgia University of Texas A&M Tech University of Colorado Texas at Austin Baylor University

# DOE NATIONAL DESAL HUB

- \$20 MILLION PER YEAR
- 5 YEARS
- FOCUS ON IMPROVED
   DESALINIZATION FOR
  - BRACKISH GROUNDWATER
  - GEOTHERMAL WATER
  - PRODUCED WATER

National Association for Water Innovation

# BENEFICIAL USE OF TREATED PRODUCED WATER



Photo copyright Boston.com



ARE WE ONE SMALL STEP OR ONE GIANT LEAP AWAY?

Rick McCurdy RMc<sup>3</sup> Consulting LLC

International Petroleum Environmental Conference October 7-9, 2019 San Antonio, Texas



