Bioremediation Coupled with Chemical Oxidation for Treatment of Oil-Based Drill Cuttings

Christian J. Elliott Ohio Soil Recycling, LLC

Kerry Sublette The University of Tulsa

Remediation of Hydrocarbon in Soils

- Typical bioremediation process for hydrocarbons:
 - Fertilizer
 - Provide N and P for hydrocarbon degraders
 - Bulking agent
 - Increase O_2 and water infiltration
 - Tilling
 - Mixing
 - Aeration
 - Moisture

Bioavailability of petroleum hydrocarbons

- Most important mechanism
 - Direct contact of microorganisms with a bulk liquid hydrocarbon phase (interfacial contact)

Droplets of mineral oil in a culture of hydrocarbondegrading bacteria

Recommended practice for landfarms

Getting the microbes together with the hydrocarbon

- Increasing surface area for contact between soil water and hydrocarbon is very important to increasing rates of biodegradation
- If the initial TPH concentration is too high for optimum treatment, you can dilute the contaminated soil with uncontaminated soil to increase rates of bioremediation:
 - Utilize full 6-8 inch depth
 - Utilize surrounding soil as a diluent
 - Rule of thumb: dilute until the soil no longer glistens

What about treatment of drill cuttings?

- Adding topsoil
 - Provides an inoculum
 - Improves moisture holding capacity
 - Improves nutrient retention
 - Improves permeability and aeration
 - Creates more surface area for contact between hydrocarbon and soil moisture
 - Decreases hydrophobicity and improves wettability
 - Increases final volume of treated material which can generate disposal issues

Two drill cuttings samples each blend with topsoil in same ratio and treated in the same way to encourage bioremediation of diesel hydrocarbons

- Nutrients
- Moisture
- Aeration

Clearly sample A is degrading very slowly compared to Sample B. It's not a salinity issue!

The Cool-Ox[®] process

(Producing hydrogen peroxide in situ) $CaO_2 + H_2O \rightarrow Ca(OH)_2 + H_2O_2$

(Chelates activate intrinsic catalysts) $H_2O_2 + Fe^{+2} \rightarrow (OH)^- + [OH]^{\bullet} + Fe^{+3}$ $H_2O_2 + Fe^{+3} \rightarrow (OH)^- + [OOH]^{\bullet} + Fe^{+2}$

(Radicals react with contaminants) $[OH]^{\bullet} \& [OOH]^{\bullet} + C_{\chi} \rightarrow C_{\chi}(OH)_{\gamma}$

The Cool-Ox[®] process

(Producing hydrogen peroxide in situ) $CaO_2 + H_2O \rightarrow Ca(OH)_2 + H_2O_2$

(Chelates activate intrinsic catalysts) $H_2O_2 + Fe^{+2} \rightarrow (OH)^- + [OH]^{\bullet} + Fe^{+3}$ $H_2O_2 + Fe^{+3} \rightarrow (OH)^- + [OOH]^{\bullet} + Fe^{+2}$

(Radicals react with contaminants) $[OH]^{\bullet} \& [OOH]^{\bullet} + C_{\chi} + C_{\chi}(OH)_{\chi}$ Highly biodegradable and hydrophilic

Wettability of Cool-Ox treated hydrophobic cuttings/soil blend: left, control; right, Cool-Ox treated

Timeframe: 1 min

After > 100 days of bio treatment Sample A was split and half treated with Cool-Ox

Preliminary conclusions

- Cool-Ox treatment greatly accelerated degradation of diesel hydrocarbons in a cuttings/soil blend that was hydrophobic and biodegrading very slowly
- Was the effect purely oxidation, improved wettability, or both?

ISCO/Bio/ISCO Treatment of Oil-Based Drill Cuttings

 Samples of neutralized drill cuttings (avg. 9 wt% TPH) were pretreated with Cool-Ox: objective was reduction in hydrophobicity

Pre-bio Cool-Ox treatment of Ohio stabilized cuttings, application rate 10 gal/yd³ (10 day incubation)

Fraction	% H₂O₂	% Cool-Ox Solids
Ohio D	5	8
Ohio E	4	6
Ohio F	0	0

TPH concentrations in stabilized and neutralized cuttings pre- and post-initial treatment with Cool-Ox

Initial Cool-Ox Treatment

Biotreatment

Sample	Cool-Ox pretreatment	Soil inoculum (2 wt%)
OD	yes	no
OD-S	yes	yes
OE	yes	no
OE-S	yes	yes
OF	no	no
OF-S	no	yes

+ nutrients

Bioremediation of Cool-Ox Treated Cuttings

Post-bio Cool-Ox treatment

Sample	% H ₂ O ₂	% Cool-Ox Solids
OD	3	6
OD-S	3	6
OE	4	8
OE-S	4	8
OF	5	10
OF-S	5	10

Results of post-bio Cool-Ox treatment

Results of post-bio Cool-Ox treatment

Conclusions

- Pre-bio Cool-Ox treatment of stabilized drill cuttings had no detectable effect on TPH concentration but may have positively affected final results of a ISCO/bio/ISCO treatment chain
- Biotreatment alone did not achieve treatment goals likely due to hydrophobicity
- Biotreatment followed by ISCO achieved treatment goals and rendered cuttings non-hydrophobic
 - Reductions in hydrophobicity makes soil washing to remove salts feasible

