Remediation of Brine Spills- What Goes Wrong

Kerry Sublette University of Tulsa

Spills of produced water or brine on soil result in two types of damage:

в

Excess salinity

- Creates an osmotic imbalance that reduces water uptake by plant roots. Plants can go into drought stress even though there is plenty of water in the soil.

Spills of produced water or brine on soil result in two types of damage:

- Excess sodicity (an excess of sodium)
 - Destroys soil structure by dispersing clays
 - Produces a hardpan that will not transmit water
 - Erosion

Both salinity and sodicity must be addressed in any successful remediation of a brine impacted site

Remediation of a Brine Spill In Brief

- First response
 - Flushing and containment
- Reducing salinity
 - Breaking open the soil
 - Bulking agents
 - Fresh water
 - Drainage
- Reducing salinity
 - Soluble calcium ion to reverse sodic reaction with clays
- Revegetation
 - Taking advantage of plant root systems

There are many ways for this process to go wrong

First response to a brine spill

- Flushing with fresh water into a receiving body followed by disposal of salty water
 - Soak the area between the spill and the receiving body with fresh water **before** flushing

Expect things to go from bad to worst if you don't do anything or don't do enough

Site topography was an issue

Recommended remediation method

- Ripping, tilling with hay and fertilizer application, calcium source
- Subsurface drain at the bottom of the spill
 - Predicted that the salt was going to continue down slope and pool
- Only hay and fertilizer application with tilling was done (once); no artificial drainage used, no calcium source

Google Earth 2004

Same Telephone	NR.	e to the second	
Legend			CA.A
EM-31 Data (ms/m)		79.12 - 84.32	
<value></value>		84.32 - 88.60	-
47 - 52.81		88.60 - 93.20	
52.81 - 58.62		93.20 - 98.10	
58.62 - 63.52		98.105 - 103.90	
63.52 - 67.80		103.90 - 112.46	Lunia I
67.80 - 73.31		112.46 - 120.12	
73.31 - 79.12		120.12 - 125.00	

0 15 30 60 90 120

Metrics

- Salinity
 - Soil salinity is measured as a saturated paste EC
 - $EC_{sat paste} \approx 3 \times EC_{1:1}$
 - Assumes good contact and dry soils
- Sodicity
 - Sodium adsorption ratio (SAR)

SAR = [Na⁺] All units meq/L

$$\begin{bmatrix} [Ca^{+2}] + [Mg^{+2}] \\ 2 \end{bmatrix}^{1/2}$$

Soil, Water & Forage Analytical Laboratory

Oklahoma State University Division of Agricultural Sciences and Natural Resources 045 Agricultural Hall E-mail: soiltesting@okstate.edu Stillwater, OK 74078 Website: www.soiltesting.okstate.edu

SOIL SALINITY REPORT

Name

Location :

SUBLETTE CONSULTING, INC 8802 E. 98TH ST

TULSA, OK 74133

Lab ID No.: : 663008 Customer Code : Sample No. : 805 Received : 9/19/2012 Report Date : 9/25/2012

Test Results for Comprehensive Salinity(Saturated paste extraction)

Cations		Anions		Other	
Sodium (ppm)	4922.1	Nitrate-N (ppm)	<1	pН	7.4
Calcium (ppm)	2914.9	Chloride (ppm)	13646.7	EC (µmhos/cm)	34900
Magnesium (ppm)	570.5	Sulfate (ppm)	622.4	Texture	Coarse
Potassium (ppm)	105	Boron (ppm)	0.3		
		Bicarbonate (ppm)	309.7		
Derived Va	lues		Derive	ed Values (cont'd)	
Total Soluble Salts (T	'SS in ppm)	23091.4	Exchangeabl	le Sodium Percentage	(ESP) 23.5
Sodium Adsorption R	atio (SAR)	21.8	Exchangeabl	le Potassium Percenta	ge (EPP) 6.1
Potaesium Adsorption	Ratio (PAR)	0.3			

Example of correlation between field and lab EC: heavy clay, high moisture content

EMP EC correlates with lab EC_s but greatly underestimates actual soil EC_s

Geophysical methods tells you relative salt concentrations in the subsurface

Lab ECs (mS/cm) 0-10 ft interval

Water

- Soluble salts are transported by water No water no movement
- How much water? A unit depth of water will remove about 80% of the salts from the same depth of contaminated soil.

Example: 12 in interval of contamination with

an EC of 28 mS/cm

Leaching water (in)	% of salts leached	Approximate EC (mS/cm) after leaching
6	50	14
12	80	5.6
24	90	2.8

Remediation of brine spills will require more than the calculated amount of water to be applied because of runoff and evaporation.

Water

- Lots of water is required which means lots of time if you don't irrigate.
- Lots of organic matter in the soil improves permeability to water. A thick layer of mulch retains moisture and reduces evaporation.

Soil, Water & Forage Analytical Laboratory

Oklahoma State University Division of Agricultural Sciences and Natural Resources 045 Agricultural Hall E-mail: soiltesting@okstate.edu Stillwater, OK 74078 Website: www.soiltesting.okstate.edu

WATER QUALITY REPORT

SUBLETTE CONSULTING, INC	Name :	Lab ID No.:	: 668766
8802 E. 98TH ST		Customer Code	: 1392
	Location :	Sample No.	: 1
TULSA, OK 74133		Received	: 11/16/2012
		Report Date	: 11/21/2012
	I		

Test Results for Irrigation Water

Sodium (ppm)	14	Nitrate-N (ppm)	10.6	рΗ	7.7
Calcium (ppm)	78	Chloride (ppm)	87	EC (µmhos/cn)	589
Magnesium (ppm)	12	Sulfate (ppm)	10	" (
Potassium (ppm)	3	Boron (ppm)	0.03		
		Bicarbonate (ppm)	115		
Derived Va	lues	\	Deri	ved Values(cont'd)	
Derived Va	lues	\	Deri	ved Values(cont'd)	
Lotal Solubio Solte / L	SS in ppm)	388.7	Sodium Pe	rcentage	10.9 %
Total Soluble Saits (1	atio (SAR)	0.4	Hardness (ppm)	243.9
Sodium Adsorption R					Very Hard
Sodium Adsorption R Potassium Adsorptior	n Ratio (PAR)	0.0	Hardness C	Jass	very naru

INTERPRETATION AND REQUIREMENTS FOR Irrigation Water

Water of this quality is suitable for use on most crops under most conditions. A problem may eventually arise with continued use of this water on very heavy soils where essentially no leaching occurs. If rainfall is sufficient, it will dilute the salts and reduce the hazard. If sodium is the main problem, gypsum can be used to help remedy the problem.

Signature

Oklahoma State University, U.S. Department of Agriculture, state and local governments cooperating. Oklahoma Cooperative Extension Service offers its programs to all eligible persons regardless of race, color, national origin, religion, sex, age or disability and is an Equal Oppurtunity Employer.

Capillary Migration?

- Capillarity can be described as the migration of soil moisture against the forces of gravity
 - Occurs in unsaturated soil environments
- Three contributing factors of capillary action
 - Pore size in the soil matrix
 - Surface tension of soil water
 - Wettability of soil mineral particles

Capillary Migration

- Capillary action causes the unexpected migration of brine within the soil
 - Has proven to negate remediation efforts
 - The same forces causing the vertical migration of brine also cause the LATERAL migration of brine
- Helps explain the persistence and growth of brine scars
- Brine components must be driven well beyond the plant root zone in the long term to allow revegetation

Guidance on estimated capillary rise

Handbook of Drainage Principles (OMAF, Pub. 73)

Soil type	Capillary rise (inches)
Very coarse sand	0.8
Coarse sand	1.6
Medium sand	3.2
Fine sand	6.8
Very fine sand	16.0
Silt	40.0
Clay	> 40.0

Depending on soil texture salt must be moved at least this far out of the root zone of desired vegetation

Drainage: the salt has to have somewhere to go

- What are the options?
 - Vertical drainage
 - Will it go deep enough?
 - Will it impact groundwater?
 - Lateral drainage
 - Will it cause additional damage?
 - Can I protect environmental receptors?

Where will the salt go?

The salt has to have somewhere to go

Remediation using lateral drainage

Underlying clay at about 3-4 ft

7 months of treatment

20 months of treatment (June)

Factors affecting risk to groundwater from surface brine release

- Chloride mass
- Aquifer thickness
- Depth to groundwater
- Effective width of surface impact
- Annual precipitation
- Pan evaporation index
- Surface soil type top 3 ft
- Slope
- Vadose zone material (from 3 ft to aquifer)
- Hydraulic conductivity of aquifer

Factor	Effect
Chloride mass	More salt means more impact
Aquifer thickness	Affects dilution through mixing; thicker aquifers mean more dilution of chloride
Soil texture	Affects rate that chloride migrates downward in the vadose zone; faster transport means less dilution of the chloride in groundwater
Hydraulic conductivity of aquifer	Affects dilution through mixing; faster groundwater flow rates mean more dilution of chloride
Effective width of surface impact	Greater spreading of spill results in greater dilution of salt when it reaches groundwater
Annual rainfall and evaporation index	Water infiltration from rainfall; more rain faster transport of salt downward in the vadose zone and less dilution of the chloride in groundwater
Depth to groundwater	Greater depths to groundwater can result in more dispersion of salt as it is transported downward and more dilution of chloride in groundwater

Relative risk to groundwater

Parameter	Relative risk
	factor
Chloride mass	10
Aquifer thickness	7
Depth to groundwater	3
Effective width of surface impact	3
Annual precipitation	2
Pan evaporation index	2
Surface soil type top 3 ft	4
Slope	1
Vadose zone material (3 ft to	5
aquifer)	
Hydraulic conductivity of aquifer	4

- Site characteristics argue for vertical migration of salts below the root zone
 - Clay lens below root zone are protective of groundwater
 - Sandy soil minimizes potential for capillary suction
 - Low recharge rate minimizes movement of salt in the subsurface under natural rainfall conditions
 - Deep groundwater results in spreading and therefore dilution of any salt that gets to the aquifer
 - High hydraulic conductivity results in rapid dilution of any salt reaching the aquifer
- Irrigation required to drive salts below the root zone

Remediation strategy for this site Surface Brine impacted soil

Incorporate calcium, irrigate to push brine well below root zone

Move salt low enough in soil profile that capillary suction will not bring it back into the root zone.

Withdraw heavy irrigation; seed, fertilize, and provide just enough water to establish vegetation cover

When vegetation established irrigate only enough to keep vegetation healthy; when plants mature withdraw artificial water

Evapotranspiration further decreases net recharge to aquifer further slowing any downward movement of brine

After 7 months of treatment

Sodicity and soil structure

 $Ca^{+2} Ca^{+2}$

Clay particles or platelets in soil are held together by Ca⁺² ions

High concentrations of Na⁺ ions can displace the Ca⁺² and cause the clay particles to disperse

Effect of leaching on salinity vs sodicity

Effect of leaching on salinity vs sodicity

Rainfall or irrigation

Effect of leaching on salinity vs sodicity

Calcium is required to fight sodicity

Gypsum application rates

If you use gypsum remember that particle size is important

Due to the low solubility of gypsum, gypsum is typically effective only within the depth to which it is incorporated into soil

