Modeling groundwater vulnerability to contamination from produced water storage in Lea County, New Mexico

Katie Zemlick, PhD

Center for Water and the Environment Department of Civil, Construction, and Environmental Engineering University of New Mexico czemlick@unm.edu

> International Petroleum Environmental Conference October 30th – November 1st, 2018

> > Denver, CO

Center for Water and the Environment

Acknowledgements

Co-authors:

Dr. Elmira Kalhor, Department of Economics, University of New Mexico Dr. Jeri Sullivan Graham, Department of Civil, Construction, and Environmental Engineering

New Mexico Oil Conservation Division Staff

Dr. Kerry Howe (UNM) and Dr. Vincent Tidwell (Sandia National Laboratories)

Funding for this research provided by:

 National Science Foundation (NSF) Center for Research Excellence in Science and Technology Postdoctoral Research Fellowship (CREST-PRF), NSF Award #1827062

Center for Water and the Environment

OIL PRODUCTION IN NEW MEXICO

- Long production history
- Production has doubled in the last five years
- >40k Wells in the Permian Basin, NM produce 95% of state's oil. Includes Lea, Eddy, and Chaves counties

>500k bbl oil/day

PRODUCED WATER

30,000

25,000

20,000

15,000

0.000

5000

2011

2012

2013

2014

Oil production (m³/well)

С

- Wells in the Permian Basin, NM produce 94% of state's produced water
- Water-to-oil ratio (WOR) is largest in the country ~ 5:1

Eagle Ford

Permian

Niobrara

Bakken

90,000

80,000

70,000

60,000

50,000

40,000

20,000

10,000

2011

2012

2013

2014

2015

2016

€ 30,000

water (m³/well)

D

Eagle Ford

Permian

Niobrara

Bakken

Kondash, A. J., Lauer, N. E., & Vengosh, A. (2018). The intensification of the water footprint of hydraulic fracturing. *Science advances*, 4(8), eaar5982.

2016

2015

GROUNDWATER VULNERABILITY

Why?

- Produced chemistry
 - Total dissolved solids (TDS)
 - ~100k ppm
- Storage Requirements
 - Separation process
 - Prior to disposal
 - Recycling, treatment and reuse
- Storage Types
 - Tanks and pits
 - Head vs. volume
 - Siting and design regulations

Total Dissolved Solids in Oil & Gas Produced Waters

SPILLS

Occurrence and Volume of Spills

Spill Sources and Causes

Data Sources: NM OCD Spills Database, 2018

RESEARCH QUESTION

What factors influence the likelihood of spill occurrence? In which locations is groundwater most vulnerable to contamination as a result of long-term releases from storage?

Why?

- Future production trends
- Existing storage locations, design, age, etc.
- Regulatory response
- Prioritization of on-site assessments of releases

Proof-of-Concept and Preliminary Analysis

METHODS

		Consequences (Vulnerability)				
		Negligible	Minor	Moderate	Significant	Severe
Likelihood (Probability)	Very Likely	Low Med	Medium	Med Hi	High	High
	Likely	Low	Low Med	Medium	Med Hi	High
	Possible	Low	Low Med	Medium	Med Hi	Med Hi
	Unlikely	Low	Low Med	Low Med	Medium	Med Hi
	Very Unlikely	Low	Low	Low Med	Medium	Medium
			-			

Risk = probability * vulnerability

Probability ~ Count Model Regression

Vulnerability ~ GIS-based DRASTIC methodology (Aller, 1985)

COUNT MODEL DATA SOURCES

- Monthly data 2006-2018 (NM OCD, 2018)
- Number and volume of releases
- Active Production Wells
 - Produced Oil (bbl), Gas (MCF), Produced Water (bbl)
- Active SWDs Volume Injected (bbl)
- Retail Gasoline Price (USD) (EIA, 2018)
 - U.S. All Grades All Formulations

Image Credits (clockwise from top): Leaking tank: <u>http://www.globalpropertysystems.com/wp-</u> <u>content/uploads/2016/01/leakingTank.gif;</u> Disposal well: EJ Sullivan Graham, 2016; Trucks: http://eaglefordtexas.com/wpcontent/uploads/sites/9/2016/04/oil-and-gas-trucks-in-Montney-Canada.jpg

COUNT MODEL FORMULATION

 $y_i: count \ variable \\ y_i \in \{0, 1, 2, \dots\}$

We want to model y_i using X_i

We start with a Poisson distribution:

$$P(y_i = y | \lambda_i) = \frac{e^{-\lambda_i} \cdot \lambda_i}{y!} \quad for \ y \in \{0, 1, 2, \dots\}$$
$$\lambda_i = E(y_i | X_i) \ge 0$$

 λ_i is a function of X_i .

$$\lambda_i = P(y_i = y | X_i) = h(X_i) = H(X_i'\beta) \ge 0$$

Usually,

$$\lambda_{i} = P(y_{i} = y | X_{i}) = e^{X_{i}'\beta} \ge 0$$

$$\begin{cases}
P(y_{i} = y | X_{i}) = \frac{e^{-\lambda_{i}} \cdot \lambda_{i}}{y!} \\
\lambda_{i} = e^{X_{i}'\beta}
\end{cases}$$

COUNT MODEL - RESULTS

DRASTIC INDEX

Depth to Groundwater

<u>R</u>echarge

Aquifer media

Soil media

Topography

Impact of vadose Zone

Hydraulic **C**onductivity

Rating (r): 1-10 where increasing values represent vulnerability Weight (w): 1-5 where increasing values represent importance

Feature	Rating	Rating (σ)	Weight
D		3.5	5
R		3.4	4
Α		2.6	3
S	1-10	3.2	2
Т		3.8	1
I		2.7	5
С		3.5	3

DRASTIC Index = $D_r D_w + R_r R_w + A_r A_w + S_r S_w + T_r T_w + I_r I_w + C_r C_w$

DRASTIC DATA SOURCES

- Multiple scales
- Various formats (rasters, points, shapefiles)
- Aggregated to TR (36 mi²)

DRASTIC - RESULTS

- Parametric Sensitivity
- Spatial trends
- Data availability
- Uncertainty

Parameter ratings (raw) vs. weighted index values

RISK ESTIMATION

Vulnerability and DRASTIC parameters Probability

- Oil production 2006-2017
- Relational
- Relative to average value
 Additional Parameters
- Disposal wells
- Well age
- Temporal trends

SPILL DATA AVAILABILITY AND TRENDS

Reporting Requirements

what has been reported:				
Description	Reported Values			
Coordinates	62%			
County	69%			
Incident Type	76%			
Spill Cause	81%			
Volume Spilled	86%			
Spill Source	87%			
Material Spilled	97%			
Spill Date	99%			

What has been reported?

GROUNDWATER IMPACTS

EMERGING TRENDS IN WATER MANAGEMENT

- Conventional Methods:
 - Trucking
 - SWD disposal
 - Secondary recovery
- Conveyance
- Treatment and reuse
 - NMAC 19.15.34 "Part 34"
 - Siting and design requirements
 - 28 facilities state wide (14 in DI&II)
 - >10Mbbls recycled

Credits: https://oilvoice.com/Press/23941/Arthur-D-Little-Analysis-Finds-Collaboration-is-Central-to-Unlocking-Enormous-Oil-and-Gas-Potential-of-US-Permian-Basin; https://www.daily-times.com/story/money/industries/oil-gas/2018/10/28/oil-and-gasadapts-drought-extraction-grows-permian/1606290002/; https://www.law360.com Arthur D. Little Analysis Finds Collaboration is Central to Unlocking Enormous Oil and Gas Potential of US

Permian Basin

Posted by OilVoice Press - OilVoice

Oil and gas adapts to drought as extraction grows in the Permian

6 1 M 1 In 1 M 1 A 1 rd

Adrian C Hedden, Carlsbad Current-Argus Published 7:58 a.m. MT Oct. 28, 2018

Industry officials say they could lead the way on water sustainability

Portfolio Media. Inc. | 111 West 19th Street, 5th floor | New York, NY 10011 | www.law360.com Phone: <u>+1 646 783 7100</u> | Fax: +1 646 783 7161 | customerservic@law360.com

Permian Water Disposal A Thorn In Our Side, Oil Execs Say

By Michelle Casady

Law360 (October 11, 2018, 10:28 PM EDT) -- Disposing of water used in oil and gas operations in the relatively rural stretches of the Permian Basin is one of the biggest challenges facing energy companies, executives from Shell and Callon Petroleum Co. said at a Houston energy panel on Thursday.

Callon Petroleum's biggest water worry for its Permian operations used to be sourcing enough water to frack its wells, but that has "quickly morphed to disposal," Joseph C. Gatto, president, CEO and director of Callon said. And because so much wastewater is trucked out of the Permian, energy companies have to contend with high volume trucking activity that makes the roads in the region dangerous, Amir Gerges, general manager for Permian Shell, said.

"If anything could constrain our growth, it could be water," Gerges said. "I think we're going to find a solution, because once one company cracks that nut, others will follow suit."

The remarks came as part of an energy summit at Rice University's Baker Institute Center for Energy Studies in Houston.

FUTURE WORK

- Model validation
- Data challenges
- Additional and confounding factors
- Water storage locations and temporal trends
- Expanded research area

THANK YOU!

Katie Zemlick czemlick@unm.edu

Image credit: EJ Sullivan Graham