Produced Water Management Leading Management Practices for Reducing Leaks and Spills

Dan Mueller, P.E.

Legislative arm of Environmental Defense Fund

Who is EDF?

- Non-profit environmental advocacy
- Comprised of technical and legal expertise
- Sound science informs sound policy
- EDF is active in encouraging (to a degree fund) science to identify and fill knowledge gaps

Produced Water

All water that returns to the surface during life of well

- Hydraulic fracturing flowback
- Formation water
 - More than just total dissolved solids
- Return of on-going operation chemicals
- Transformational products
 - High heat + high pressure = chemical reactions

Disposition of Produced Water

- Injection/disposal wells
- Recycle back into hydraulic fracturing operations of subsequent wells
- Reuse outside oil and gas operations
 - Irrigation
 - Livestock
- Discharge

Disposition of Produced Water

- Injection/disposal wells
- Recycle back into hydraulic fracturing operations of subsequent wells
- Reuse outside oil and gas operations
 - Irrigation
 - Livestock
- Discharge

Environmental Issues with Recycle or Reuse

- Storage
 - Larger volumes for longer periods of time
- Transportation
 - Longer distances and greater flows
 - Multiple staging points
 - Centralized storage facilities
 - Treatment facilities

Leaks and Spills

- Studies show the majority (potentially 70%+) of groundwater impacts from O&G operations are a result of surface operations
- Recycle/reuse drive more and larger surface management of produced water
- Highlight the need to address leaks and spills

Produced Water Spills

Tx RRC Probable Cause – 2016 Data

Produced Water Spills

Tx RRC Probable Cause – 2016 Data

You build it, it will break.

Design/Construction/Operation Storage Facilities and Pipelines

- Engineering projects requiring appropriate design
- Design to account for possible failure
 - Keeping a leak from becoming a release
- Ensure construction adheres to design
- Document design changes during construction
- Routine inspections and maintenance

Impoundment - Design Elements

Geotechnical

- Bedding
- Berms
 - Side slopes
 - Top width
 - Construction lifts/compaction tests
- Liners
 - Double lined with leak detection
 - Bedding beneath secondary liner
- Leak detection
- Filling and off-loading operations

Liner Selection and Installation

- Primary and secondary liner
 - Thickness
 - Puncture strength
 - Tear strength
 - Chemical compatibility

Installation

- Anchoring
- Seam welding
- Directional orientation of seams
- Interspatial material
- Bedding beneath secondary liner

Filling and Off-Loading Operations

- Minimize placement of hoses/couplings inside impoundments
- Install permanent pipeline headers for filling and off-loading
- Extra liner material in "wear zone"
 - Consider different color to readily identify "wear zone" area
- Spill catchments at couplings for filling and offloading
- Continuous monitoring during filling/off-loading

Leak Detection

- Option "draining and inspections" as form of leak detection
- Preference double liner with leak detection
 - Proper slope to leak detection sump
 - Interspatial material
 - Geogrid
- Water will still pass through a liner
 - Determine action leak rate

Construction Quality Assurance Specific to Impoundments

- Assure Liner integrity
 - International Association of Geosynthetic Installers
 - Certified welder program
 - Certified installer program
 - In-place liner integrity verification
- In-field liner weld test
 - Non-destructive
 - Test if weld is complete
 - Destructive
 - Force on weld to cause weld to fail

Tanks - Design Elements

- A Number of Design and Operation Standards
 - API Standard 650
 - API Standard 653
 - ASME Boiler and Pressure Vessel Code
 - AWWA Standard D100
 - AWWA Standard D102
 - AWWA Standard M42
 - STI SP001
 - Underwriter Laboratories' UL 142

Tanks - Design Elements

- Secondary Containment
 - Sufficient volume for release plus expected precipitation (25-year storm)
 - Release volume largest tank or interconnected tank system that acts as a single tank
 - Maintained to remove accumulated liquids
- Leak Detection
 - Volume tracking
 - API 650 (Welded Tanks for Oil Storage) Appendix I

Leak Detection Systems - Tanks

Figure I-1—Concrete Ringwall with Undertank Leak Detection at the Tank Perimeter (Typical Arrangement)

1-1

gure 1-2—Crushed Stone rangwall with Undertank Leak Detected at the Tank Perimeter (Typical Arrangement)

Leak Detection Systems - Tanks

Figure 1-4-Double Steel Bottom with Leak Detection at the Tank Perimeter (Typical Arrangement)

Figure 1-5—Double Steel Bottom with Leak Detection at the Tank Perimeter (Typical Arrangement)

Modular Site-Assembled Tanks

Part tank, part impoundment

- Vertical walls
- Liner

Leak detection and containment required

Construction Quality Assurance Storage and Pipelines

- Oversight of construction activities
 - Document and evaluate field tests

 Any design changes documented and approved by engineer

• Development of certified as-built plans after construction

Routine Maintenance

Routine visual inspections

Using a check list is a good idea

Identify needed maintenance

Confirm maintenance completed

Dan Mueller dmueller@edf.org 512-691-3453