# HYDRÓZONIX Treatment for Blended Produced and Fresh/Brackish Water



# **Produced Water Cycle**

Wellhead to Injection Well



Typically placed prior to gun barrels to prevent bacteria and provide iron control







# **Produced Water Options**

Tank Battery

HYDR<sup>o</sup>CIDE

#### Where are you getting your Produced Water

Produced Water from tank batteries can have higher oil, iron and solids. Must consider this if recycling from this point Gun Barrel OWS

Produced Water from Gun Barrels is generally better quality. Low oil, low solids and if oxidation is being used for bacteria control, low iron



# **Produced Water Options**

#### **Typical Reuse Model w/Aeration**



## **Aeration Background**

- Air Driven
- Submersible or Floating
- Submersible better for oxidation and solids control
- Submersible include bubble tubing and diffuser type systems
- Floating only aerates the top few feet, leaving the remaining water to foul and bacteria to grow
- Systems must be sized based on water quality and oxygen demand



# Aeration: Produced Water

### **Aeration Benefits**

- Bacterial Control/Growth
  Inhibition
- Algae Control/Growth
  Inhibition
- Iron Control
- Sulfide Control
- Stratification Control
- Icing Inhibition
- Mixing / Homogenization

Air hose

• Low Cost





### **Produced Water Pit Mixing w/Aeration**

#### Improved Water Quality – 24 hour

Pit Mixer Comparison



#### Reserve Pit Active Pit

|   | Parameters              | Active Pit with Mixing /<br>Aeration | Reserve Pit without Mixing /<br>Aeration |
|---|-------------------------|--------------------------------------|------------------------------------------|
|   | Pit Volume, bbl         | 100,000                              | 15,000                                   |
|   | ORP, mv                 | 184                                  | -336                                     |
|   | Total Fe, mg/L          | 4.3                                  | 168.7                                    |
| - | Fe <sup>2+</sup> , mg/L | 0.3                                  | 103.0                                    |
| 2 | Tannins, mg/L           | 15.5                                 | 73.0                                     |



# **Produced Water Reuse Requirements**

#### What Are Your Goals

| Constituent             | Slickwater                            | Guar<br>(Linear) | Guar (XL) | Hybrids (XL) |
|-------------------------|---------------------------------------|------------------|-----------|--------------|
| Chlorides (ppm)         | 140K (anionic)<br>No Limit (cationic) | 60K              | 60K       | 60K          |
| Total Hardness<br>(ppm) | 50K                                   | 20К              | 20К       | 20K          |
| Iron (ppm)              | 25                                    | 10               | 10        | 10           |
| Oil (ppm)               | 100                                   | 50               | 50        | 50           |
| TSS (ppm)               | 100                                   | 100              | 100       | 100          |
| Boron (ppm)             | No Limit                              | 10               | 10        | No Limit     |
| Bacteria (cfu/ml)       | 100                                   | 100              | 100       | 100          |









#### **The Hydrozonix Difference**

- Identify right micron size to satisfy your goal
- Field evaluations and size distribution are performed to identify micron size performance
- Nominal vs. Absolute



Particle Size Distibution for Produced Water Samples











# **Produced Water Management for Reuse**



HYDRO<sub>3</sub>CIDE Bacteria, Iron & Sulfide Control



Aerating Mixer Bacteria, Iron, Sulfide & Solids Control

#### Bacteria

90%

| 90%      |  |  |
|----------|--|--|
| Iron     |  |  |
| 90%      |  |  |
| Sulfides |  |  |

#### 70% Iron 90%

Sulfides

Bacteria





| Bac  | teria |  |
|------|-------|--|
| 90   | %     |  |
| Iror | 1     |  |
| 90   | %     |  |
| Sul  | ides  |  |
| 90   | %     |  |



### **Blend Control**

#### **No Control**



**Volume of Fresh Water and Produced Fluid Treated at Different Stages** 





### **Produced Water Pit Mixing**

#### **Continuous TDS Monitoring: Baseline shows stratification**



H\_C

### **Produced Water Pit Mixing w/Aeration**

**Continuous Temperature Measurement: 3 zones monitored** 





# Solution

#### **Keep Blend Ratio Consistent**

- Calibrate Pumps
- Monitor TDS Real Time
- Adjust Blend Ratio
- Prevent Friction Reducer Compatibility Issues







aeration to preserve your water quality. Simplify your On-the-Fly disinfection program. Monitor compatability and disinfection real time.

# Questions?

# www.hydrozonix.com