RANGE RESOURCES[®] Marcellus Shale Production Facility Emissions: Leak Detection Field Study

NOVEMBER 9, 2017

- How many leaks? Implementation of field-wide Leak Detection and Repair (LDAR) program generated ~68% reduction in fugitive leaks
- Where are leaks occurring? Atmospheric stock tanks are the main contributor of emissions within a production facility
- Proper tank vent valves and set point selection are critical for reducing emissions & leak points

- Continued good
 environmental stewardship
- New regulations
- Public scrutiny
- Product loss

RANGE RESOURCES®

TYPICAL SITE LAYOUT

Any venting of gas or vapors to atmosphere when:

- 1. Outside design parameters or equipment set points
- 2. And visible with an optical gas imaging camera

Example: Leaking Weighted Thief Hatch (older industry standard)

Any venting of gas or vapors to atmosphere when:

- 1. Outside design parameters or equipment set points
- 2. And visible with an optical gas imaging camera

Example: Leaking Stainless Fitting (solenoid)

Key takeaways:

- Total leaks over 1-year period
- 77% of leaks are tank related (i.e. PRVs, thief hatches)
- 13% from Gas Production Units (GPU)

WHERE ARE LEAKS OCCURRING?

REDUCTION IN OPTICAL GAS IMAGING LEAKS

RANGE RESOURCES"

NON-TANK LEAKS – MAIN CONTRIBUTORS

Secondary pneumatic ESD at GPU w/ Relay

Relay – degradation of seal, which leads to leaking - elastomer upgrade

Pneumatic ESD – either packing or actuator diaphragm – elastomer upgrade/OGI testing prior to installation

PREVIOUS TANK VENTING DESIGN

PREVIOUS TANK VENTING DESIGN

ENHANCED TANK VENTING DESIGN

ENHANCED TANK VENTING DESIGN

Tank Vacuum ATM

RANGE RESOURCES"

PILOT OPERATED VALVES

Seat load <u>increases</u> with increasing tank pressure and is at maximum just below set point. Weight Operated Valve

Seat load <u>decreases</u> with increasing tank pressure and is at minimum just below set point.

THIEF HATCH REPLACEMENT EXAMPLE

Challenges:

- 1. "Bubble-tight" seal required
- 2. Maintain flow capacity
- 3. Provide pressure/vacuum relief and tank access

Designed for Range

- Leaks will develop over time (even on the *best* valve technology)
- However Any leaks on <u>new</u> tank valves can be corrected by cleaning and/or replacing diaphragms
- Parts are readily available to correct leaks
- Future work needed on diaphragm elastomer longevity

Weighted hatch – for older tanks

ATTENTION TO DETAIL

- Possible to significantly reduce fugitive leaks over a relatively short period of time for upstream O&G
- Focus on atmospheric stock tank valve design is essential – almost 80% of fugitive leaks are at the tank battery
- Leaks from other sources are minor and easily corrected (only 1 new leak per ~25 wells per quarter)

QUESTIONS?

NON-TANK LEAKS – WHY THE INCREASE?

- Two quarters without inspections/leak corrected prior to Q2 2017 – More leaks started during that timeframe
- Q2 2016 and Q2 2017 leak distributions are very similar
- Data shows 30-40 new non-tanks leaks per quarter

RANGE RESOURCES

COST OF LEAK REDUCTION

Tank Valve Upgrades

2015 → 2018 = \$3.5MM 2015 → 2018 = \$3.5MM + maintenance/labor ~\$4.7MM

'Rippling' effect caused by mechanical deformation – often installed on vacuum pallets

Test concluded = > 7 months without leak

RANGE RESOURCES

"Optical gas imaging equipment is capable of imaging a gas that is half methane, half propane at a concentration of 10,000 ppm at a flowrate of ≤60g/hr from a quarter inch diameter orifice"