Leachate-Focused Remediation Strategy for Bunker-C Contaminated Site Using Chemical Oxidation

Randy H. Adams Enrique Romero-Frasca Verónica I. Domínguez-Rodríguez

Background

- In general remediation strategies try to achieve 3 goals:
- Reduce risk of toxic impacts to human (or other) receptors
- Restore usability of site according to natural vocation or urban planning
- Reduce risk of unpleasant odors/flavors in groundwater
- Assumption 1): higher HC conc. leads to higher toxicity/leachates or other impacts (for example fertility)
- Assumption 2): reducing HC conc. to sufficiently low level will reduce or eliminate those impacts (to acceptable levels)
- What if the impacts could be reduced without concentrating on HC conc., but the impacts themselves? (save \$\$\$)
- Treatment focused on reducing the impact (easier) than the HC conc.

Site: Bunker-C Contaminated Soil In a Thermal-Electric Plant

- Bunker-C fired thermal-electric plant (1963) converted to gas in 1990s
- Demolition of old fuel tanks, boilers, fuel distribution area to build new plant and double capacity
- Underlying soil contaminated with weathered fuel oil in sandy loam soil ~2.5 – 3% TPH (heavy oil range)
- Very low toxicity, almost null volatility, but potential to leach and contaminate ground water → aesthetic characteristics priority
- Site was actually remediated to 9,600 mg/Kg with chem-ox, but.....
- Could it have been remediated more efficiently with less cost by concentrating the remediation strategy directly at reducing soil leachate potential???
 - → objective of this study

Methods

- Soil was collected from the site and water added to 30% moisture
- H₂O₂ was added (30% w/v solution) until final concentrations of:
 0.1, 0.2, 0.3, 0.6 and 1.2% w/w of the reagent in soil (3 pseudo-replicates)
- Well mixed and later, air dried
- Water repellency measured by MED and WDPT as per Adams et al. 2008
- TPH measured by EPA 418.1 using PCE for solvent with calibration curve made with oil from site
- TPH measured also measured TCLP extracts

Initial Soil Conditions

Table 1. Untreated soil characteristics												
Sampl	le pH	SOM	EC	Sand	Clay	Silt	FC	BD	TPH	LP	MED10	WDPT
		(%)	(dS/m)	(%)	(%)	(%)	(%)	(kg/m³)	(mg/kg)	(mg/l)	(M)	(s)
$\overline{\mathbf{X}}$	8.2	13.2	0.6	32.0	16.0	52.0	19.3	976.4	31,785	4.3	4.6	3,270
SD	0.2	0.01	0.03	0.01	0.01	0.01	0.01	0.01	423.15	0.59	-	-
SOM soil organic matter, EC electrical conductivity, FC field capacity, BD bulk density, TPH total petroleum												
hydrocarbons, LP leaching potential, MED10 molarity ethanol drop in 10 seconds, WDPT water drop												
	penetration time.											

Water Repellency

• Water repellency reduces effectiveness of water based reagents

Hydrocarbon Concs. in Soil

Hydrocarbon Concs. in Leachates

Comparison of Soil TPH and Leachates

Conclusions

1) At only 1.0% w/w H_2O_2 a concentration of petroleum hydrocarbons in leachate safe for human consumption (< 1mg/l) could be obtained even with a final hydrocarbon concentration in soil >2%.

2) Alternative strategy focused on direct impacts (leachates) vs. TPH in soil allows for site remediation at higher TPH levels

 \rightarrow much less cost

Conclusions

Optimization using: 1) lab/field test for reactant ratios

2) Specialized equipment designed for mixing (ALLU)

Actual on-site processing times approx. 2 – 4 weeks
 → could have been reduced by about 1/2

Could have used about 1/3 – 1/5 less reagent
 → save money, time

Actual TPH reduction of 65 – 85%
 → could have been reduced to only 35%

Conclusions

Importance of really focusing on what is the problem

(rather than on some TPH number)

- Probably longer but possible up to 70,000 ppm initial TPH
- Complications with higher concentrations, especially in asphaltenes contaminated soil

→ formation of oily crust?

Thank you for your attention

