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e Subsurface activities

— Oil and gas production

— Carbon sequestration

Coalbed methane
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* LIBS Technology

Sources: U.S. Energy Information Administration and U.S. Geological Survey.
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* Water from underground formations
brought to the surface during oil and
gas production

* About 15-20 billion barrels per year or
1.7-2.3 billion Gallons per day (ANL
Report 2009)

e Water from conventional and Marcellus
wells is given in the figure (Lutz et al.,

CONVENTIONAL MARCELLUS
Water Resour. Res., 49, 2013) N w— = racking Fluid ™=
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e Capturing CO2 and storing it in such
a way that it does not enter the
atmosphere

* Compression and injection into deep
geological formations

* Pressure build-up particularly in
saline storage formations has risk of
brine leakage
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Marcellus Shale Produced
Water Composition
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* The sub-surface activities can potentially impact the deep aquifers and
affect the quality of groundwater supplies if leakage were to occur by
adding contamination from the injection formation or fluids.

e Detection of entrained contaminants that migrate into shallow
groundwater aquifers is important to evaluate impacts on water resources.

 Produced water Management and groundwater monitoring are essential part
of oil and gas production

* Laser induced breakdown spectroscopy (LIBS) technique is an emerging
techniques for groundwater monitoring.
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Laser Induced Breakdown Spectroscopy TL [rEctnorocy

* Laser is fired upon a given sample and laser energy focused to a small
spot

* A hotluminous plasma vaporizes the material, and leads to atomization
and excitation of elements

* As plasma cools, emission occurs and the emitted light can be collected

* Every element in the Periodic Table gives off light at a distinct
wavelength

* LIBS can perform in-situ elemental and isotopic analysis of liquid
samples and is capable of making underwater measurements

* Flexibility of probe design, and use of fiber optics make it a suitable
technique for real-time and stand-off measurements in harsh conditions
and at hard to reach places.
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* High energy laser pulse creates micro plasma plume on the sample.

It ablates a very small amount of material

* The ablated material dissociates into excited ionic and atomic species

e The excited atoms/ions present in the plasma emit light at their
characteristic wavelengths

* Spectral analysis of the emission spectrum from the plasma is used to

infer the elemental composition of the sample

Shock Atomic
Blasma Iwave Ermission
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Laser Induced Breakdown Spectroscopy TLJRs6R 16k
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Acquisition
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Pulse generator

Beam dump

E—
\Dﬁmﬁ
Sample cell
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Detector controller

Nd:YAG laser

Spectroscopic data

A E—E 8i—§; A; loniz. energy (eV)
Czerny-Turner (nm) (cm?) (10857
spectrometer
Ca 422.67 0-23652.30 1-3 2.18 6.11
Sr 460.73 0-21698.45 1-3 2.01 5.70
670.78 0-14904.00 2-4 0.37
Li 5.39
670.79 0-14903.66 2-2 0.37
K 766.49 0-13042.90 1-4 0.39 4.34
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Calibration Curves, Detection Limits, N=|rarona
and Quantification Limits of K+, Li+, TL IE%Q;‘E%S&"
Ca2+, and Sr2+
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Sr2*  0.9990  2.89+0.11ppm  9.63%0.39 ppm

Ca?t 0.9997 0.9420.14 ppm  3.11+0.07 ppm

Li* 0.9988 60+2 ppb 0.19+0.01 ppm
K* 0.9977 3041 ppb 80+4 ppb

Easily ionized elements were detected in the
ppb range, whereas elements with emission
i originating at higher energy levels were
detected in the low ppm range
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, D.L. Mclntyre, J. Jain, A.K. Karamalidis, Appl. Spectrosc., 68(2), 213-221 (2014)
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Comparing Matrix Effects Induced by N=|NAronaL
Common sodium compounds: NaCl, TL IE%S’;‘E%S&Y
Na2504, and Na2CO3
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10?
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— Increase in sodium compounds (from 0.1, 1, to 10 wt.%) affect detection of the elements

— Must be accounted for with all measurements (Example: use of an internal standard)

C. Goueguel, D.L. MclIntyre, J. Jain, A.K. Karamalidis, C. Carson, Appl. Optics, 54(19), 6071-6079 (2015)
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Shamrock
spectrograph

Pressure gauge

Nd:YAG Laser Exhaust

Fiber optic
bundle

M2 plate

Polarizing

beamsplitter ‘ Pressure

vessel

Double

Pressure
=l Dichroic  lenses pump
S @ Mirror Plasma
‘ : ” Focused ,
irror -
Periscope tl,an?; ‘!
=2 cm

— Optically accessible pressure vessel (0.5 liter), 6,000 psi — 300 F

— Experimental conditions: 20 mJ/pulse; 160 ns gate delay; 400 ns gate width; 500
accumulations; 5 replicates
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Pressure-induced line broadening:

20-37% increase of the full at
width half maximum (FWHM) for
Cal and Ba Il lines

Intensity (a.u.) x 10*
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—
pCO,=350 bar

CO, pressure has minimal adverse
effects on the signal-to-background
ratio (SBR), other than a small
decrease at 350 bar

Strong and well-resolved spectral lines of L
Ca?* and Ba?* cations obtained in CO,- 0 100
saturated water over 50-350 bar

200 300 400
pCO: (bar)

C.L. Goueguel, J.C. Jain, D.L. McIntyre, C.G. Carson, H.M. Edenborn, Submitted to J. Anal. At. Spectrom. (April 2016)
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Calcium Calibration Curves and
Detection Limits
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Ambient 0.9997 735204

50 0.9977 9.21+0.3
150 0.9962 9.37+0.5
250 0.9988 9.03+0.8
350 0.9994 9.58+0.3

50 100 150 200

Increasing CO, pressure over the range 50—
350 bar has little effects on calcium detection
limit (DL), which was estimated to be about 9

ppm.

C.L. Goueguel, J.C. Jain, D.L. McIntyre, C.G. Carson, H.M. Edenborn, Submitted to J. Anal. At. Spectrom. (April 2016)
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Application: In-situ Measurements of N=|rarona

CaCO; Dissolution as a Function of Rising TL [rEctNoLocy
CO, Pressure
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carbonate boundary | : .
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* Method and Device or Remotely Monitoring An Area Using a low Peak
Power Optical Pump, US Patent 8786840 B1

M M
HR oc L
Lc
Fiber % Spark
[ —
7 QSW
L DM L | ; | DM
Laser

— Fiber delivers pump pulse and returns spectral signature

— Laser can be designed to perform either LIBS or RAMAN excitation

— Laser is approximately 1 inch long

— Entire optical setup can be sealed to withstand pressure and temperature

— Laser operation is dictated by selection of optical element parameters and tailoring of
input pump pulse
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LIBS Sensor

Original design

Low Power
Pump Laser

)

Computer

!

Spectrometer/
Detector

Optical
Distributor
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Spark in water

P
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WorkKing prototype

Working prototype now in operation
Fiber coupled to CW laser diode
Remotely End Pumped

Nd:YAG Gain Medium (green)
Cr:YAG Passive Q-switch (brown)
1064nm 3m] 1.2ns 10 Hz

Sensing head can be distributed

J.C. Jain, D.L. McIntyre, K.K. Ayyalasomayajula, V. Dikshit, C. Goueguel, F. Yu-Yueh, J.P. Singh, Pramana - Journal of Physics, 83,179-188 (2014)
D.L. MclIntyre, J.C. Jain, C. Goueguel, J.P. Singh, in “Spectroscopic Techniques for Security, Forensic and Environmental Applications” Nova Publication, USA, pp 25-52 (2014)
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J.C. Jain, D.L. Mcintyre, K.K. Ayyalasomayajula, V. Dikshit, C. Goueguel, F. Yu-Yueh, J.P. Singh, Pramana - Journal of Physics, 83,179-188 (2014)
D.L. Mclntyre, J.C. Jain, C. Goueguel, J.P. Singh, in “Spectroscopic Techniques for Security, Forensic and Environmental Applications” Nova Publication, USA, pp 25-52 (2014)
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Power, data
storage and
processing,
display, and
control

Pump Beam

Laser Pulse

- \\\\\\\ .
Nd/Cr¥YAG pulsed laser

o

DOWNHOLE LASER MODULE
MONITORING WELL

CG. Carson., C. Goueguel, J. Jain, D. MclIntyre., Proc. SPIE 9467, Micro- and Nanotechnology Sensors, Systems, and Applications VIl, 94671K (May 22, 2015)
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* Laser induced Breakdown Spectroscopy (LIBS) can provide mineral
composition of aqueous samples

* Measurements in high pressure conditions makes it suitable for down hole
conditions

* Use of fiber optics can aid the analysis at hard to reach places

* LIBS can provide a robust sensing device to determine long term ground
water quality

* Development of a field deployable LIBS sensor is in progress

— Component integration toward field scale studies
— Laser and optical design for harsh environments

— Fiber optics Coupling
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