Degrading Organic Compounds in Simulated Produced Water by Creating Hydrogen Peroxide Catalytically

<u>Yiyuan "Ben" Yin</u>, Kimberly N. Heck, Camilah Powell, Christian L. Coonrod, Sujin Guo and Michael S. Wong*

Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX *Email: mswong@rice.edu

24th IPEC, Nov. 1st 2017

- Background of water research
- □ Nanotechnology-enabled water treatment (NEWT)
- □ The role of our group in NEWT
- How we can apply nanotechnology to use organic acids present in produced water to in-situ degrade the hazardous organics (e.g. BTEX)?

(Note:1 exajoules is 10¹⁸ joules)

Importance of Water for Energy

- Wastewater is the largest byproduct of the fossil fuel industry
- Water/Oil Ratio = 10 (US), 14 (Canada)
- Cost related to water including wastewater treatment, corrosion and biofouling...
- \$1 trillion/year challenge!
- How to solve it?

Nanotechnology to Cleanup Water

"Nanotechnology is the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel applications."

-National Nanotechnology Initiative

Nanotechnology to Cleanup Water

Why Nano?

- Unique phenomena at nanosize enable novel applications
- Tap unconventional water sources, generate less waste and reduce the cost

Nanomaterial Properties	Examples of Enabled Technologies
Large surface area to volume ratio	Superior sorbents (e.g. nanomagnets or graphene oxides to remove heavy metals and radionuclides)
Enhanced catalytic properties	Hypercatalysts for advanced oxidation (TiO2 & fullerene-based photocatalysts) & reduction processes (Pd/Au)
Antimicrobial properties	Disinfection and biofouling control without harmful byproducts
Multi-functionality (antimicrobial, catalytic)	Fouling-resistant (self-cleaning and self-repairing) filtration membranes that operate with less energy
Self-assembly on surfaces	Surface structures and nanopatterns that decrease bacterial adhesion, biofouling, and corrosion
High conductivity	Novel electrodes for capacitive deionization (electro- sorption) and energy-efficient desalination

Overview of the NSF-NEWT Center

Mission of the NSF-NEWT Center

- Enhance the sustainable and efficient use (and reuse) of water resources in energy production
- Reduce the economic and environmental costs of the water footprint
- Alleviate water-related impairment (e.g., souring, corrosion, flooding)
- Increase energy efficiency, safety and reliability of urban water supply

Overview of the NSF-NEWT Center

Treatment focus

Drinking water treatment

• Multidisciplinary approaches

NANOPHOTOCATALYSTS

MEMBRANE NANOTECHNOLOGY

NANO-ADSORBENTS

• Reduce organic compounds

(Why: Some organic compounds (e.g. BTEX) are hazardous to livings (if discharge), excessive organics may cause fouling in the formation (if reuse))

Reduce bacterial

(Why: Sulfate reduction bacterial (SRB) itself can cause plugging and the H_2S produced can cause corrosion and scaling (if reuse), health issues of the livings (if discharge))

• Reduce iron

(Why: Fe(II) can form FeS and FeCO₃ scale. Fe(III) can precipitate as $Fe(OH)_3$)

- 1. Fixed-bed heterogeneous catalysis for generating oxidants such as hydrogen peroxide (H_2O_2) from (i) air and water; and (ii) air with organic acids present in the water (contained in produced water) to degrade bacteria and sulfide.
- 2. Electrocatalytic oxidation and catalytic wet air oxidation of hydrocarbons in produced water using an electrochemical reactor to generate H_2O_2 or other oxidant in situ.
- 3. Magnetic nanoparticles and magnetic traps to remove ferrous and ferric iron from produced water.

Oxidant	Oxidation Potential, V
Hydroxyl Radicals	2.8
Ozone	2.3
Hydrogen Peroxide	1.8
Chlorine Dioxide	1.5
Chlorine	1.4

Overview of some produced water characteristics from wells in the Marcellus region of Pennsylvania

Characteristic	Maximum	Average		
TDS (mg L^{-1})	345 000	106 390	Toxic organic	4
TSS (mg L^{-1})	7600	352	a compounds	
Oil and grease $(mg L^{-1})$	802	74		
$COD (mgL^{-1})$	36 600	15358		
TOC (mg L^{-1})	1530	160		H_2O_2 (OH·)
pH	8.42	6.56		
Alkalinity (mg L^{-1} as CaCO ₃)	577	165	\ Organic acids	
$SO_4(mgL^{-1})$	763	71	(e.g. formic acid,	
$\operatorname{Cl}(\operatorname{mg} \operatorname{L}^{-1})$	196 000	57 447	acetic acid)	In-situ
Br (mg L^{-1})	1990	511		apperation
Na (mg L^{-1})	117 000	24 123		using
$Ca (mg L^{-1})$	41 000	7220		nanomaterial
Mg (mg L^{-1})	2550	632		
Ba (mg L^{-1})	13 800	2224		
$Sr(mgL^{-1})$	8460	1695		
Fe dissolved (mg L^{-1})	222	40.8		
Fe total (mg L^{-1})	321	76		

Proposed Model Organic Degradation RICE

(Note: Formic acid was used as a model organic acid in produced water, and phenol was used as a model toxic organic compounds in produced water)

- 100 mL liquid volume
- 10,000 ppm Formic acid
- 20 mg 1% Pd/Al₂O₃ (or 200 mg 1.2% Au/Al₂O₃)
- pH~3.5
- Room Temperature (~22 C)
- 1000 rpm stirring rate

Formic Acid Conversion Profiles

	1% Pd/Al2O3	1.2% Au/Al2O3
k _{meas} (h⁻¹)	0.644	0.018
k _{cat} (L per gcat per h)	3.22	0.009

Formic Acid Conversion vs H₂O₂ Selectivity RICE

moles of H_2O_2 formed / moles of formic acid consumed × 100

- 100 mL liquid volume
- 10,000 ppm Formic acid
- 20 mg 1% Pd/Al₂O₃ (or 200 mg 1.2% Au/Al₂O₃)
- pH~3.5
- Room Temperature (~22 C)
- 1000 rpm stirring rate

100 ppm phenol

- Pd and Au are both active for the phenol degradation
- Formic acid usage efficiency for phenol degradation is higher on Au than Pd

Composition of Simulated Produced Water RICE

Oil & Gas Brine Water (OGBW) provided by NEWT center

General Parameters	Specification		
рН	7.0±0.25		
Constituents	Concentration (mg/L)	Concentration (mM)	
Bicarbonate (HCO ₃ -, initial)	50	0.82	
Calcium (Ca ²⁺)	6,940	173	
Chloride (Cl ⁻)	99,719	2813	
Magnesium (Mg ²⁺)	520	21.4	
Sodium (Na⁺)	56,000	2436	
Sulfate (SO ₄ ²⁻)	550	5.7	
Total Diss. Solids (TDS)	163,779	-	
Ionic Strength	-	3,025	

Note: Spiked with 5 mg/L iron(II) (Fe²⁺)

Phenol Degradation in Simulated PW SRICE

Summary and Future Work

- H₂O₂ can be formed in the conversion of model organic acid (formic acid) and O₂.
- Degradation (+90%) of model organic compound (phenol) can be achieved for both Pd and Au catalyst in diluted model produced water.
- This catalytic system will further be tested in real produced water

Acknowledgements

- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (ERC-1449500) and Specialty Minerals
- Professor Michael S. Wong for his advice
- Dr. Ciceron Ayala for the assistance in TEM characterization
- Catalysis and Nanomaterial Group at Rice University

Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment

Join Us

Website: www.newtcenter.org Newsletter: http://bit.ly/newtsignup **Twitter: @newtcenter Facebook:** newtcenter

12

GN

Some of NEWT Partners

 Innovation across value chain (nanomaterial and equipment manufacturers, service providers, R&D and deployment partners, and users)

Thank You! Any Questions?

Backup slides

Proposed mechanism of H_2O_2 generation with low selectivity

