Scott ENERGY TECHNOLOGIES LLC

Creating Value and Reducing Cost While Protecting the Environment Jeffrey Tyson - IPEC 2017 - San Antonio, TX

Overview

- Drilling Waste and Traditional Management Methods
- Sham Recycling vs. Legitimate Recycling
- Ideal Recycling Program
- Solidification/Stabilization
- Reducing Costs
- Additional Benefits

Drilling Waste

Rock cuttings and fluids that are produced during drilling

1.2 barrels of waste generated per foot drilled

Average 50% solids / 50% liquids

392,000,000 bbls generated in 2014

Enough to fill 25,000
Olympic-size swimming
pools

Contaminants in Drilling Waste

• Metals

- Arsenic
- Barium
- Cadmium
- Chromium
- Lead
- Mercury
- Selenium
- Silver
- Zinc

Salts

- Chlorides
- Organics
 - Hydrocarbons
 - Benzene
- pH
- NORM/TENORM
- Proprietary / Uncertain additives

EPA's Waste Management Hierarchy

Traditional Disposal Methods

- Landfilling
- Land Spreading/ Land Farming
- Road Spreading (Road Application)
- On-site Burial

Legitimate Recycling – U.S. EPA

- Provides a useful contribution to the recycling process or to a product or intermediate of the recycling process
- Produces a valuable product or intermediate
- Managed as a valuable commodity and in a manner consistent with the management of the raw material
- Must be comparable to a legitimate product or intermediate
 - Must meet widely recognized commodity standards and specifications

The recycled product must meet environmental, geotechnical, and transportation performance criteria.

Sham Recycling – U.S. EPA

"Sham recycling may include situations when a secondary material is <u>ineffective</u> or only <u>marginally effective</u> for the claimed use; <u>used in excess</u> of the amount necessary; or handled in a manner inconsistent with its use as a raw material or commercial product substitute."

Sham Recycling

Insufficient or non-existent specifications

Little to no value created

The Best Drill Cutting Recycling Program

- Mobile moving from site to site
- Saves money and creates value
 - Proper construction positively impacts drilling, completions, production, maintenance, safety, and liability
- Performance specifications are clearly defined
 - Transportation and geotechnical standards and specifications
 - Strength and durability
 - Designed to last the life of the well
 - Environmental standards and specifications
 - Hydraulic conductivity of 1x10⁻⁶ cm/s or less
 - Leachability Criteria
 - Reduces operator's risk and liability
 - Sequesters contaminants instead of diluting the contaminants

The Best Drill Cutting Recycling Program

- Routine, representative sampling to manage variability
- Physical and chemical analyses using appropriate test methods
- Bench-scale testing prior to processing
- No significant increase in volume
- Creates a valuable asset
- Protects human health and the environment

Solidification/Stabilization

Solidification/Stabilization (S/S) is the most appropriate and cost effective solution for managing drilling waste.

- Interstate Technology and Regulatory Council (ITRC) Guidance for S/S
- One of the most common in-situ technologies at Superfund sites for source control
- Initially used to dispose of radioactive and nuclear materials
- Produces a strong, concrete or asphalt -like material
- Utilizes both chemical and physical controls

Jeffrey Tyson - IPEC 2017 - San Antonio, TX

12

Solidification/Stabilization

- Well rounded technology
 - Treats salts, metals, hydrocarbons and other contaminants known to be present in drilling waste
 - Inherently treats other unknown contaminants as well
- Apply transportation and geotechnical engineering principles
 - Resistant to rutting
 - Load-bearing structure designed for direct traffic
 - Bridges soft underlying soils
 - Turns waste into an asset

Completed Firmus[®] Process

Solidification/Stabilization

Firmus[®] Processed Cuttings

Reducing Costs

Typical Model

- Disposal
 - Box Rental
 - Trucking
 - Solidification
 - Disposal
 - Washout
 - Equipment and personnel
- Construction
 - Labor
 - Equipment
 - Materials

- Scott's Recycling Model:
 - Sampling and Testing
 - Trucking
 - Processing
 - QA/QC
 - Construction

Additional Benefits

- Reduces trucking costs and miles traveled
- Reduces construction costs for lease roads and drill pads
- Reduces the need for raw aggregates to be mined
- Less overall land impacts
- Reduces maintenance costs on lease roads and drill pads
- Reduces environmental risk and liability
- Reduces disposal costs
- Provides a more stable location
 - More efficient operations means saving time
 - Enhanced safety reduces slips, trips, falls
 - Not effected by inclement weather
- Based on sound Science

About Scott

- Established in 1994
- Pioneers in the drilling waste management industry
- Expert project and waste management
 - Successfully recycled hundreds of thousands of cubic yards of drilling waste from hundreds of oil and gas wells across the U.S.
 - Constructed hundreds of drill pads/lease roads using drill cuttings
- Specially trained employees, professional engineers and strict QA/QC
 - Representative samplings, bench scale testing, and in-house geotechnical lab
- Sustainable practices based solely on sound science
- Patented process for recycling drilling waste

About Scott

Jeffrey Tyson, P.E. Corporate Sales Executive Scott Energy Technologies LLC <u>www.scottenergy.com</u> 903-663-4635 jntyson@scottenergy.com

