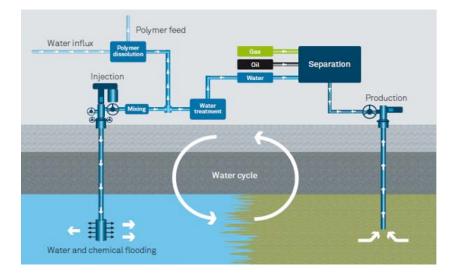
November 1, 2017 - 24th IPEC - Iris Porat and Miguel Pelaez

Chemical Degradation of Polymer Used in Enhanced Oil Recovery (EOR) Produced Water

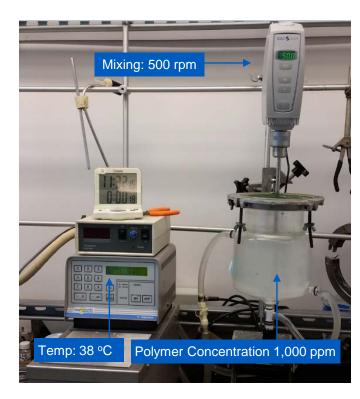

кетіга

Background

Produced water with polymer – challenges:

- Viscosity and viscoelastic properties of produced water - poor performance of water-oil separators
- Water discharge in sea polymer (HPAM) is not readily biological degradable and is categorized as red chemical by European regulations.
- 3. Challenges both offshore and onshore

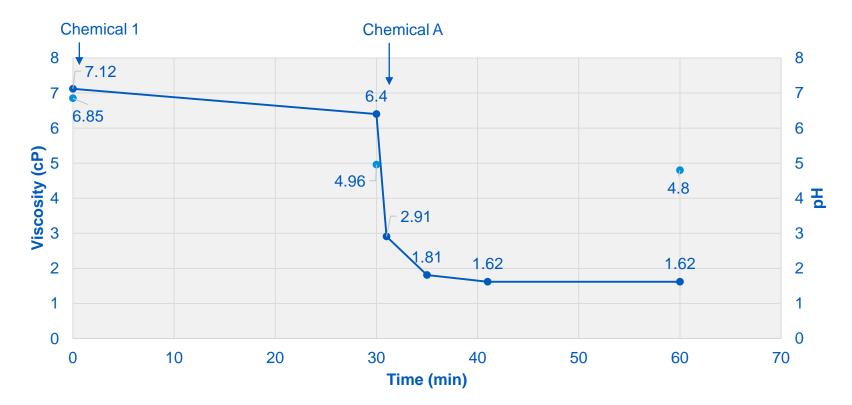
Optimizing the water cycle

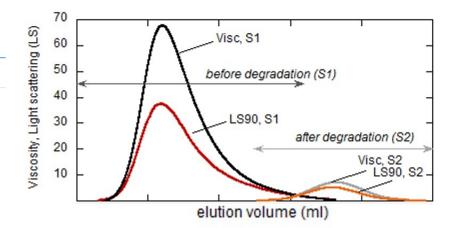


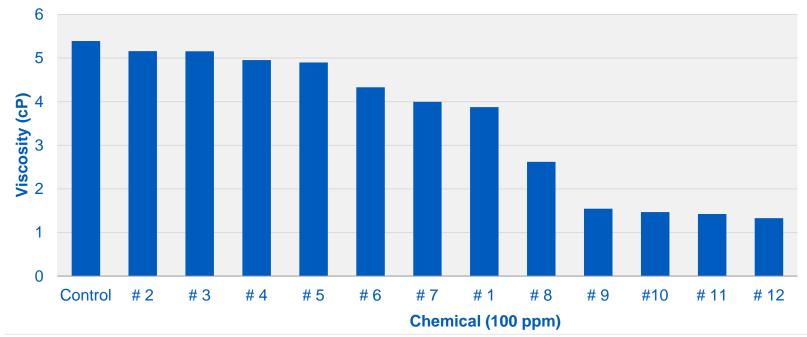
OSPAR and Norwegian Regulations Classification of chemicals

Category	Criteria - toxicity	Actions
Black	 Prioritized list of White Paper No. 21 (2004-2005) OSPAR List of Chemicals for Priority Action Low biodegradability + high bioaccumulation (BOD28 <20% and log Pow ≥5) Low biodegradability + toxic (BOD28<20% and EC50 or LC50≤10 mg/l) Substances described as carcinogenic/mutagenic or affecting reproductive way 	Not discharged
Red	 Inorganic substances with high toxicity (EC50 or LC50≤ 1 mg/l) Organic substances with low biodegradability (BOD28<20%) Substances that meet two of the three following criteria: Biodegradability (BOD28<60%), or Bioaccumulation potential (Log Pow≥3), or Toxicity (EC50 or LC50≤10 mg/l) 	Not discharged/ exchanged
Yellow	substances not categorized as red or blackNot on the PLONOR list	Discharge with permits
Green	 Substances on the OSPAR PLONOR list 	Discharges permitted – no restrictions

EOR polymers (polyacrylamide) are classified red duo to their biodegradation (BOD28<20%)

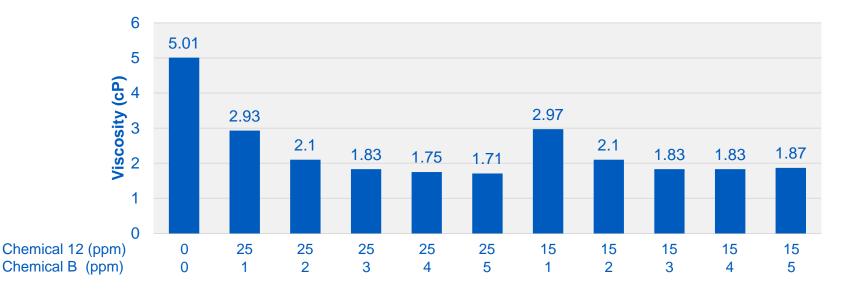

Aerobic degradation of HPAM


Aerobic degradation of HPAM

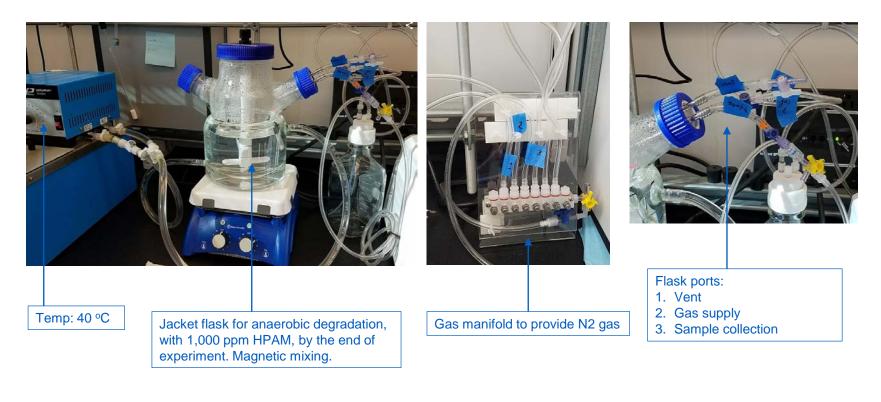

Aerobic degradation of HPAM – GPC results

	S1 (before treatment)	S2 (after treatment)
Viscosity ¹	7.12 cP	1.62 cP
MW ²	5.28x10 ⁶	1.07x10 ⁵

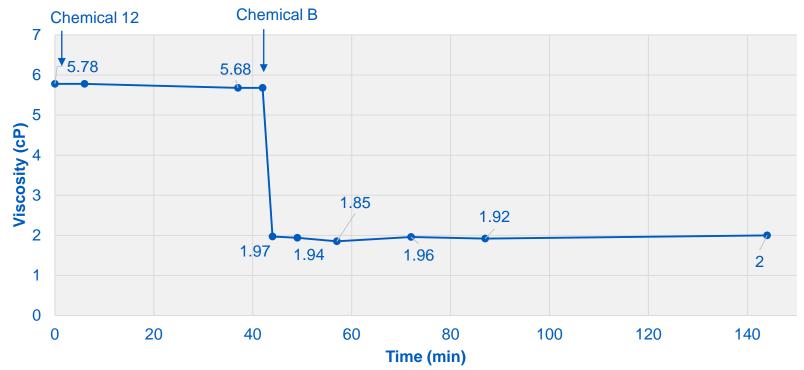
- Using viscometer, at room temp, 60 rpm speed
- 2. MW using gel permeation chromatography (GPC)



Anaerobic degradation of HPAM (1,000 ppm) in 3% NaCl, using chemical A (100 ppm) and list of chemicals


- Small anaerobic bottles incubated in a shaker at 250 rpm, at 40°C for 2 hours
- 16 chemicals tested replacing #1 and 8 chemicals replacing A

Anaerobic degradation of HPAM (1000 ppm) in 3% NaCl, using concentrations of chemical 12 and chemical B


- Small anaerobic bottles incubated in a shaker at 250 rpm, at 40°C for 30 minutes
- Additional conditions tested included temperatures (room temp to 80 °C), pH, type of polymers, synthetic water and costumer produced water; in all cases with positive results.

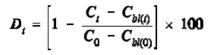
Anaerobic degradation of HPAM in a reactor

кетіга

Anaerobic degradation of HPAM (1,000 ppm) in 3% NaCl, using chemical 12 (25 ppm) and chemical B (5 ppm), at 40 °C

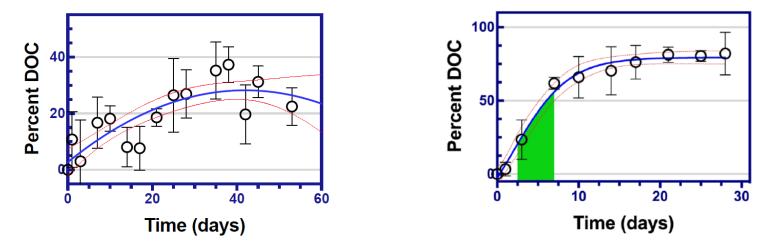
The chemically degraded polymer (anaerobic conditions) became biodegradable - Internal results

Characteristics of the sea water used for biodegradation test


Microbial content (plating in marine agar):	8.8 * 10 ³ cells/ml	
Microbial activity (ATP test):		
Free ATP	264 pg	
Total ATP	777 pg	
Salinity:	2.6 %	
pH:	6.9	
Total organic carbon (TOC):	5.2 mg/L	

Results of biodegradation test

	% TOC biodegradation HPAM (not degraded)	% TOC biodegradation - chemically degraded HPAM with chemical 12 (25 ppm) + chemical B (5 ppm)
25	0	0.26
28	4.16	35.68
33	15.24	60.25
36	93.65	100.52


OECD 306 biodegradability in seawater test using the shake flask method with DOC analysis

The chemically degraded polymer (anaerobic conditions) became biodegradable - External results (Situ Bioscience LLC)

Sample - 1 - Kemira - 487 - 91

Control – Na Acetate

MIC test (minimum inhibitory concentration) didn't show toxicity to bacteria when tested Kemira sample (4 - 500 ppm). OECD 306 test, showed 26.9% (SD +/-8.5%) biodegradation for the treated polymer following 28 days incubation. The sample achieved a degradation plateau at 45 days. They tested Kemira sample in 6 replicates.

кетіга

Conclusions

- Following chemical degradation, the viscosity of the polymer solution dropped in a short time.
- Following chemical degradation, the polymer became biodegradable. This would allow oil companies to discharge treated polymer into the sea when is needed.

Acknowledgements

Mehrdad Hesampour Ph.D., Principal Scientist, R&D, Espoo, Finland

Luciana Bava, Ph.D., Manager, R&D, Atlanta, GA, USA

Susanna Toivonen, MSc., Business Manager, Helsinki, Finland

the are addentified and

a newspanne colligence consists and the second s

Thank you!

Questions?

Iris Porat, Ph.D. Principal Scientist at R&D Kemira Atlanta, GA, USA Cell +1 865 297-2919 iris.porat@kemira.com

Kemira

Where water meets chemistry[™]

