Treatment of Hydrocarbon Impacted Groundwater from a Former Refinery using Multi-Stage Constructed Wetlands

MARTIN SCHMIDT: AECOM CORPORATION SCOTT WALLACE: NATURALLY WALLACE ERIC LARSON: BP REMEDIATION MGMT SERVICES CO. DAVID TSAO: BP REMEDIATION MGMT SERVICES CO.

IPEC November 17, 2015

Objectives

• Provide overview of multi-stage constructed wetland groundwater treatment system design and operation

• Summarize operating conditions

• Discuss treatment efficiency and Lessons Learned

Site Background Information

- Location
 - Northwest New York State
 - Former Refinery now occupied by SUNY campus
 - 110 acre site adjacent to approx. major river
 - Majority of site within 100 yr. floodplain
 - Former Operations included: ASTs, Process Areas and Landfill

Site Layout

Project History / Regulatory History

- Project History
 - 1901 to 1958 : Operated as refinery
 - 1958 : Second major fire destroyed refinery
 - 1968 : SUNY begins operation
 - 1983 : Placed on National Priority List
 - Record of Decisions (1985 and 1991)
 - Operable Unit 1 : Central Elevated Landfill Area
 - Operable Unit 2 : Site Wide Subsurface Groundwater
 - 1985 ongoing : Investigation, Design, Remediation of OU 1 and OU 2

Project History / Regulatory History

- Operable Unit 2 : Site Wide Groundwater
 - 1990s: Air Sparge/Soil Vapor Extraction
 - 1999 2008: Groundwater extraction from 3 recovery wells / treatment using GAC
 - 2008 -present: Groundwater extraction:
 - 8 large diameter collection sumps
 - 3,000-ft interceptor trench
 - Water treatment using multi-stage constructed wetlands
 - 2012 present: Site Remediation Complete / Long-Term OM&M

Operable Unit 2: Remedial Design Components

Multi-Stage Constructed Wetland Treatment System

- Basis of Design:
 - Constituents of Interest (COI) include (volatile, semi volatile organics, and metals)
 - Multi-stage aerobic process using cattails to remove organics and metals from groundwater
 - Existing topography facilitates hydraulic profile gradient
 - Limited O&M, except for iron solids management
 - Design flow rate : 80-150 gpm, 14 day retention time

Multi-Stage Constructed Wetland Treatment System

• Design Components

- Cascade Aerators (4 corrugated culverts)
- Sedimentation Pond (1 pond)
- Surface Flow Wetlands (3 ponds)
- Aeration basins in Surface Flow Wetlands to facilitate removal of organics during winter months
- Vertical Flow Wetlands (5 ponds)
- Splitter box structures to divert flow to wetland ponds
- Gate valves to control water level / flow rate in Surface / Vertical Flow Wetlands

Wetland Process Schematic

Construction of Wetland Treatment System

- Sequence of Work Completed
 - September 2008: Wetlands constructed
 - December 2008: Initial Start-Up, limited plantings
 - May 2009: Supplemental plantings
 - June 2010-2015: Iron Solids Removal (Sedimentation Pond Cleanout)
 - October 2011: Construction of Water Level Control Berm constructed
 - June 2012: Installation of muskrat exclusion fencing

Cascade Aerators

- Purpose :
 - Oxidize metals (Fe, Mn) and allow precipitate to settle out
 - Gas exchange for organic compound removal
- Design Features :
 - Divides flow equally from conveyance line discharge and splitter structure
 - 4 18 inch diameter, corrugated metal culverts
 - Discharges into sedimentation pond

Cascade Aerators 2011

Wellsville Multi-Stage Constructed Wetlands 111715

Sedimentation Pond

- Purpose:
 - Allow settling of oxidized metal precipitates
 - Periodic removal of iron sludge for drying/disposal
 - Place in onsite drying beds / offsite disposal
- Design Features:
 - 60 mil lined pond, rip rap edges, concrete bottom
 - 18,000 sq. ft.
 - 248,000 gallons
 - Discharges to surface flow wetlands via gravity feed drain
- Sludge Drying Beds:
 - 4 concrete basins, 60-mil-lined, sand drainage filter system, periodic removal

Sedimentation Pond 2015

Open Water, Surface Flow Wetlands (SFW)

- Purpose :
 - Aeration to remove volatile and semi-volatile organic compounds
 - Biodegradation to remove organic compounds
 - Supplemental metals precipitation and filtering of suspended solids

• Design Features :

- 3 pond structures, each having :
 - 3 aeration basins (4-5 ft. water depth)
 - 2 benches for microbial and plant rhizosphere development (2-3 ft. water depth)
- 91,000 sq. ft.
- Combined 598,500 gallons;
- 60 mil lined pond bottom/slopes, soil benches, vegetated edges
- Discharges to vertical flow wetlands via gravity feed drain and weir gates
- Benches planted with cattails (Typha angustafolia)

Surface Flow Wetlands 2011

Muskrat Exclusion Fence

Open Water, Vertical Flow Wetlands

- Purpose:
 - Restoration of alkalinity lost from metal precipitation
 - Supplemental suspended solids removal
 - Supplemental biodegradation

• Design Features:

- 5 pond structures, each having :
 - 1 passive limestone gravel aeration basin
 - Gravel surface planted for microbial growth/rhizosphere development
 - 60 mil lined bottom/slopes, vegetated edges
 - Discharges to outfall 001 via siphon drains, pulsation
- 29,000 sq. ft.
- Combined 179,500 gallons
- Limestone beds planted with cattails

Vertical Flow Wetlands 2015

Multi-Stage Constructed Wetlands 111715

Page 20

Treatment Efficiency Results 2008 - September 2015

- Summary of Data Trends
 - Influent concentrations:
 - VOCs: Benzene 5-20 ppb; Ethylbenzene 2-35 ppb; Toluene 3-10 ppb; Xylene 5-25 ppb
 - SVOCs: Nitrobenzene: 2,000 12,000 ppb; Aniline: 50-1,600 ppb
 - Metals: Iron: 20 43 ppm; Manganese 3-7 ppm

Treatment Efficiency Results 2008 - September 2015

- Summary of Data Trends
 - Effluent concentrations significantly reduced:
 - VOCs: Non-Detect
 - SVOCs: Non Detect
 - Metals: Iron above ND, winter 2010/2011 and sporadic; Manganese above ND initially, winter 2010 / 2011, summer 2012 - 2015
 - Since 2008 approx. 450 million gallons of groundwater treated

Benzene Results

Multi-Stage Constructed Wetlands 111715

Page 24

AECOM

Aniline Results

Multi-Stage Constructed Wetlands 111715

Page 25

Nitrobenzene Results

Multi-Stage Constructed Wetlands 111715

AECOM

Multi-Stage Constructed Wetlands 111715

Page 27

Conclusions and Lessons Learned

- Wetland treatment system effectively treats VOCs, SVOCs, and Metals
 - Influent
 - VOCs display decreasing trends
 - SVOCs display stable to decreasing trends
 - Metals display stable trends, naturally occurring at background concentrations above limit
 - Effluent
 - VOCs, SVOCs non detect
 - Metals vary seasonally, near NPDES Limit
- Winter operation requires augmentation using pond aeration system (SFW)

Conclusions and Lessons Learned

- Transplanting cattails more efficient than root stock plantings
- Muskrat Mitigation Program to include exclusion fencing / annual trapping / hut removal
- Highly cost-effective system, low carbon foot print, very sustainable long-term solution
- Iron solids removal is long-term O&M issue (annual)
- ROD requires site groundwater discharge to meet MCLs
- Operation of multi-state wetland treatment system expected for additional 30+ years
- Site reclassified as Class 4 (Properly remediated as specified in ROD)

Q & A

Thank you,

