The Rise of New Insitu Soil Blending and Vadose Zone Amendment Strategies to Accelerate Source and Plume Remediation

> J. Rossabi, J.S. Haselow, S. Markesic, E. Escochea, J. Romano, G. Powers (Redox Tech, LLC)

Overview

Residual contamination and geometric scope
Remediation Techniques
Access (injection and blending)
Case Studies
Cost

Contaminant Distribution in Subsurface

- Contaminants are heterogeneously distributed in a physically (geologic), chemically, and biologically heterogeneous volume which is also dynamic – makes things easy.
 - Tortuous, preferential pathways control with diffusion playing small role
 - matrix diffusion usually much less of an issue than occlusion or inaccessible pores
 - Usually worse in vadose zone because of gas phase REDOX TECH, LLC

Residual NAPL

UNSATURATED ZONE (NAPL as the intermediate wetting fluid)

SATURATED ZONE (NAPL as the non-wetting fluid)

Air NAPL Soil Particles

Residual NAPL often occurs as disconnected blobs within the pore spaces.

Conceptual Model of Residual NAPL in Vadose Zone

Scale Reality

• Very small signal in large noisy system

Mass ~ 720,000 kg Pore volume ~ 112,500 L

Mass of contaminant for 10 mg/L = $1.125 \text{ kg} \sim 700 \text{ mL} \sim 0.001\%$ of pore volume Note: More like 100 mg/L depicted in previous pore scale figures

Characterization Scale: Excessive?

150 soil samples, 5 cm diameter, 3 m long = 0.2% of total volume

Characterization Scale: Reality

0.007% of total volume

Remediation Approaches

Typically three types of approaches:

Removal

Immobilization

Destruction

Removal Approach

Contaminant Extraction (Liquid or Vapor Phase). Can also include:
Enhance permeability (e.g., frac)
Enhance solubility and mobility (e.g., heat, solvents, surfactants)
Enhance phase transfer or vapor pressure (e.g., heat, vapor pressure)

Immobilization Approach

- Isolate Source from Surroundings
 Barrier Walls
 - In place encapsulation (cement, bentonite)
 - Change gradients or flow field (prevent movement)
 - Vitrification (solidify)
 - Change species/phase to reduce solubility or mobility (e.g., adjust pH, redox, etc.)

Destruction Approach

Chemically Transform Contaminant

- Chemical Oxidation (e.g., permanganate, persulfate, peroxide, ozone, etc.)
- Chemical Reduction (e.g. ZVI)

Biodegradation

- Electron Donor/Acceptor and/or bacteria culture
- Sufficient moisture to sustain cells

... Or a combination

Causes of Failure - Contact

Insufficient contact in active time period
Non intersecting pathways (e.g., zvi surface rxn)
Insufficient amendment/bacteria
Gas occlusion
Rebound from transport out of immobile zones

Causes of Failure - Chemistry

Reaction and Stoichiometry

- Low concentrations result in low kinetics
 - Purple doesn't necessarily mean threshold reached
- Amendment depleted on non target compounds or species (e.g., reduced minerals, methanogens)
- Redox/pH/supporting chemicals not satisfactory
 - Radicals (sulfate, hydroxyl) and persulfate rarely measured specifically
- Not enough amendment

Remediation Scale: Injection Optimism in Plan View

ROI = 2.5 m10m 15m

Residual NAPL in Vadose Zone with Ideal Amendment Distribution

Injection Heterogeneity

Injection Amendment Distribution

- Amendments typically applied and distributed non-homogeneously
- Often get lucky that amendments follow similar pathways to contaminant
- Enough amendment must be able to <u>contact</u> <u>contaminants before being depleted</u> by nontarget compounds and, must remain in contact <u>long enough for reaction to occur</u>
- Injection is actually a non-contact sport

Injection Facts

- Will not fill the target pore volume, no matter how much you inject.
- Hope that injectate is following approximately the same permeability opportunities that contaminant has (advection and diffusion).
- Increase odds with multiple points

Issues Complicating Injection

- Daylighting increases w/volume and near surface
- Sometimes displace fluids (but rarely add contaminants)
- Consider permeability issues created by reaction such as heat, gas or precipitated solids
 - Heat can create pressure that will move fluids away
 - Gas (O₂, CO₂, CH₄, H₂, H₂S) can occlude pores, reduce flow
 - Solids (MnO₂ or Fe oxides) can occlude pores, or sorb chemicals

Soil Blending

- Improves distribution by diminishing constraints of permeable pathways
- Increases homogeneity of heterogeneous system
- Apply amendment while mixing, better distribution
- Never 100% homogenized, but much better than 2D injections (really 1D*X)
- May need to re-establish soil cohesive strength

Soil Blenders and Augers

- Large diameter augers great for deep applications at well characterized sites, not as efficient for large areas.
- Soil Blenders are limited in depth (~ 22') without benching but:
 - Can efficiently blend large areas
 - Construction rates 200 to 600 tons per day
 - Fit on standard size equipment (e.g., excavator) so smaller equipment footprint
 - Lower mob/demob costs

BECAUSE NOT ALL *IN SITU* SOIL BLENDERS ARE CREATED EQUALLY

ALLU	REDOX-LANG	REDOX TECH	
		<image/>	
PMX-500	Modified Lang	Redox Tech Custom	
Working Depth: 16.4 feet	Working Depth: 25 feet (with extension)	Working Depth: 20 feet	
Constant Power: 90 HP	Constant Power: 200 HP	Constant Power: 376 HP	
Dual Motors: Yes	Dual Motors: No	Dual Motors: Yes	
Automatic Power Control: No	Automatic Power Control: No	Automatic Power Control: Yes	
Reach Working Depth in Clay: No	Reach Depth in Clay: Sometimes	Reach Working Depth in Clay: Yes	
Blend Weathered Rock: No	Blend Weathered Rock: Maybe	Blend Weathered Rock: Yes	

Soil Blender Performance

Can blend soil in situ to 22' below grade

- 21,000 ft-lbs of torque at head allows dry and wet mixing
- Can efficiently blend to depth with head completely submerged.
- Cheese Analogy for remediation contact
 - Injection Blue or Stilton
 - Weak blend Cottage
 - Strong blend Ricotta

Injection vs Soil Blend

Electrical Conductivity in the Blending Area

Hygroscopic amendments aid vadose zone remediation

- Maintain enough fluid for transport of amendments or cells to contaminant (or vice versa)
- Enough fluid to support growth of cells
 - Microzone research suggests less needed than previously thought
- Other Properties of Amendments
 - consume-able; reduce contaminant flux; suspend solids; thixotropic
- Examples: sugars, salts, alcohols, guar, silica flour, bentonite REDOX TECH, LLC

Case Study #1 – Coastal Plain Vadose Zone

- Dry cleaner Site in North Carolina
- Vadose Zone application from 4 to 8 feet bgs (500 sq ft)
- PCE in Soil (sand, silt, clay)
- Test of several amendments including oxidants and bioenhancements
- Concern about biodegradation in unsaturated zone

Case Study #1 – Pilot Test

5 Test Cells

- Control (dry blend) 5' x 5' x 7'
- Chitorem 10' x 10' x 7'
- Crab shell 10' x 10' x 7'
- ABC+ 15' x 15' x 7'
- Hydrogen peroxide, then Kperm 15' x 15' x 7'
- Multiple soil samples from each cell five times over 5 months,

Case Study #1 – Pilot Test Results

	Control Dry Mix	Chitorem	Crab shell	ABC ⁺	H2O2 then Kperm
Pre PCE (mg/kg)	6.425	0.782	0.032	11.629	2.383
Post PCE (mg/kg)	1.365	0.162	0.076	0.008	0.258
	79%	79%		99.9%	89%

- High ethene, ethane in ABC⁺ (> 4 orders)
- High methane in crab shells (> 2 orders)
- DHC in Chitorem and crab shells

Case Study #1 – Full Scale Blend

- NC Coastal Plain Blend (~222,000 cu ft = 12,210 tons) 16 days
- Pre-blend water saturation = 0.69 (avg. porosity = 0.39)
- ABC⁺ blended in at 1.25 wt% in target areas

Case Study #1 – Full Scale Blend Results Avg Concentrations (mg/kg)

	Pre Blend	Post (3 months)	Post (8 months)		
PCE	4.001	0.157	0.125 96%		
TCE	0.189	0.013	0.007 96%		
cDCE	0.057	0.826	0.043 25%		
VC	ND	0.079	ND		
REDOX TECH, LLC					

Case Study #1 – Conclusions

- Reductive dechlorination will work in vadose zone (often already working)
- Likely dependent on moisture content/contiguity and persistence
- Residual volatile contaminants often higher in higher moisture content areas (finer grain, lower permeability), so vadose zone success is not surprising
- Cost of project \$234,000 (\$29/cu yd or \$20/ton) REDOX TECH, LLC

Industrial Site in Ohio
Site soil consisted of silt and clay
TCE in Soil as high as 63,000 mg/kg
Years of active SVE was ineffective
ISCO with In Situ Soil Blending selected as best approach

- 4,658 square feet from ground surface to 20 ft bgs over 10 day period
- 78,662 lbs of potassium permanganate (based on stoichiometric demand and background soil oxidant demand)
- During soil blending the SVE system was removed
- Project completed for \$286,700
 (~\$91/cu yd or \$61/ton)

41 post blending soil samples were collected

	Pre Treatment (mg/kg)		Post Treatment (mg/kg)		Remedial Goal
	Maximum	Average	Maximum	Average	(mg/kg)
Area A	4,200	226	390	265	
Area B	583	155	380	121	1,948
Area C	63,000	902	1,300	302	

Industrial Site in Illinois

Vadose Zone application in clays and silts from 4 to 8 feet bgs (500 sq ft)
TCE in Soil as high as 10,000 mg/kg
Prior mixing using a conventional backhoe with a peroxygen ineffective at achieving remedial target (1,300 mg/kg = soil saturation limit)
Soil concentrations remained at 7,000 mg/kg

In Situ Soil Blending with Potassium Permanganate selected
Applied 2,670 lbs of Potassium Permanganate
Work completed in one day for \$17,500 (~\$233 cu yd or \$155/ton)

Trichloroethene (TCE) Oxidation Results

Remediation Cost

- Injection is inexpensive but limited distribution
 Typically \$10 to \$50 per ton (min \$250,000 per acre)
 Blending is relatively inexpensive (\$15 \$20 per ton)
- Amendments range from inexpensive (\$5 per ton bulk soil) to expensive (\$60 per ton bulk soil)
- Excavation and removal can be expensive
 Tipping cost can range from \$10 to >\$100 per ton
 Transportation cost > \$0.05/ton x number miles
 REDOX TECH, LLC

Petroleum Exploration Challenges

Oil and Gas Production derived waste
Brine, organics, fracking fluids
Stored in lined or unlined waste pits
Oxidation, reduction, pH adjustment, stabilization, solidification

Summary

- Better Access to contamination results in better remediation
- Blending can provide better Access than injection
- Amendment-based remediation in the vadose zone can be successful with blending and proper amendments

