

Stable Isotope Probing and QuantArray: Evaluate MNA of Petroleum Hydrocarbons & Emerging Contaminants

MNA Assessment

• Chemistry

Geochemistry

• Microbiology

Microbiology

Is biodegradation occurring?

Stable Isotope Probing

What is the concentration of contaminant degraders?

qPCR

QuantArray

Site Background

- Former manufactured gas plant (MGP)
- Operated from 1890s until 1953
- NAPL present
- Benzene, ethylbenzene
- Naphthalene, methylnaphthalenes, and other PAHs

Geology and NAPL staining, sheens, blebs

Sandy clay unit - NAPL

- Tar staining at discrete intervals in aperatures
- Vertical migration

Weathered limestone unit - NAPL

Groundwater Impacts - PAHs

Groundwater Impacts – Benzene

Contaminant Concentrations

Monitoring Well	Benzene Trend	Naphthalene Trend
UMW-7C	No Trend	Decreasing
UMW-44	No Trend	No Trend
UMW-37	No Trend	Near DL
UMW-6E	Decreasing	Decreasing
UMW-21	Decreasing	No Trend
UMW-22	No Trend	Decreasing

MNA Assessment

- ✓ Contaminant concentrations
- ✓ Geochemistry
- Molecular Biological Tools

Is biodegradation occurring?

Concentrations of contaminant degrading microorganisms? Stable Isotope Probing (SIP)

QuantArray & qPCR

Stable Isotope Compounds

- Specially produced "heavy" compounds which are composed of 99+% ¹³C
 - Natural compounds are 99% ¹²C
 - Same characteristics & behavior as original compound
- ¹³C label used as a "tracer" to determine if biodegradation of the compound occurred
- Incorporation of the ¹³C label into biomass and CO₂ demonstrates biodegradation

What Are Bio-Trap[®] Samplers?

- Passive microbial sampling tool
- Colonized by active microbes
- 25% Nomex and 75% PAC
- Used in conjunction with
 - Stable isotope probing
 - qPCR and QuantArray
 - Other MBTs

Bio-Trap SIP Analysis

MNA Assessment

- ✓ Contaminant concentrations
- ✓ Geochemistry
- Molecular Biological Tools

Is biodegradation occurring?

Concentrations of contaminant degrading microorganisms? Stable Isotope Probing (SIP)

QuantArray & qPCR

QuantArray

QuantArray-Petro

Aerobic BTEX and MTBE (cells/mL)

Toluene 3- and 4-Monooxygenases (RMO) Toluene 2 Monooxygenase (RDEG) Phenol Hydroxylase (PHE) Toluene/Benzene Dioxygenase (TOD) Xylene/Toluene Monooxygenase (TOL) Ethylbenzene/Isopropylbenzene Dioxygenase (EDO) Biphenyl/Isopropylbenzene Dioxygenase (BPH4) *Methylibium petroliphilum* PM1 (PM1) TBA Monooxygenase (TBA)

Aerobic PAHs and Alkanes (cells/mL)

Naphthalene Dioxygenase (NAH) Phenanthrene Dioxygenase (PHN) Alkane Monooxygenase (ALK)

QuantArray-Petro

Anaerobic BTEX (cells/mL)

Benzoyl Coenzyme A Reductase (BCR) Benzylsuccinate synthase (BSS) Benzene Carboxylase (ABC)

Anaerobic PAHs and Alkanes (cells/mL)

Benzoyl Coenzyme A Reductase (BCR) Naphthylmethylsuccinate Synthase (NMS) Naphthalene Carboxylase (ANC) Alklysuccinate Synthase (ASSA)

Other (cells/bead)

Total Eubacteria (EBAC) Sulfate Reducing Bacteria (APS)

Study Wells – Weathered Limestone

Is naphthalene biodegradation occurring?

Is naphthalene biodegradation occurring?

Naphthalene biodegradation downgradient?

Naphthalene biodegradation downgradient?

MNA Assessment

	Chemical	Microbio	logical
	Decreasing contaminant concentration?	Stable Isotope Probing Did biodegradation occur?	QuantArray Concentrations of contaminant degraders?
Naphthalene			
Benzene			

Is benzene biodegradation occurring?

Is benzene biodegradation occurring?

MNA Assessment

	Chemical	Microbio	logical
	Decreasing contaminant concentration?	Stable Isotope Probing Did biodegradation occur?	QuantArray Concentrations of contaminant degraders?
Naphthalene			
Benzene			

Applicability and Advantages of SIP

- Conclusive evidence of biodegradation
- Contaminants used as carbon and energy sources
 - Naphthalene and & PAHs
 - BTEX, chlorobenzene
 - MTBE, TBA
- Independent of pathway or conditions
 - Aerobic or anaerobic
 - Pathway unknown
 - Emerging contaminants

1,4-Dioxane

- Emerging contaminant
 - Stabilizer for chlorinated solvents (1,1,1-TCA)
 - Solvent for paper, cotton, and textile processing
- Physical properties of dioxane often make traditional treatment technologies impractical
 - Miscible in water
 - Low sorption
 - Relatively low volatility

Biodegradation of 1,4-Dioxane

- Aerobic metabolism (carbon and energy source)
 - Pseudonocardia dioxanivorans CB1190 and others
 - Dioxane monooxygenase and aldehyde dehydrogenase
- Aerobic co-oxidation
 - Ring hydroxylating toluene monooxygenases
 - Soluble methane monooxygenase
 - Alkane monooxygenases

Biodegradation of 1,4-Dioxane

• Metabolism (carbon and energy source)

Stable Isotope Probing

Aerobic co-oxidation

qPCR (RMO, RDEG, PHE, sMMO)

¹³C Incorporation into Biomass

¹³C Incorporation into DIC

Co-oxidation Potential

Did Dioxane Biodegradation Occur?

Incorporation into Biomass Detection of ¹³C enriched PLFA demonstrated that dioxane biodegradation occurred within the passive microbial sampler

Incorporation into DIC

Although low, ¹³C enriched DIC was detected indicating dioxane mineralization had occurred

Assessing Biodegradation of 1,4-Dioxane

• Aerobic metabolism (carbon and energy source)

Stable Isotope Probing qPCR New (DMXO & ALDH)

Aerobic co-oxidation

qPCR (RMO, RDEG, PHE, sMMO)

Differences between SIP and CSIA				
Stabl	e Isotope Probing	Compound Specific Isotope Analysis		
		Dissolved contaminant		
¹³ C	Enriched CO ₂	¹³ C/ ¹² C of Contaminant		
	Mineralization	Compare over time or space		
¹³ C Enric	ched of Biomass	¹³ C/ ¹² C of Daughters		
PLFA DNA RNA	Biomass Growth	Compare over time or space		
		Microbial insights		

Microbes colonize beads

¹³C-labeled compounds sorbed to Bio-Sep[®] beads

Bio-Trap colonized by indigenous microorganisms

Microbes utilize target compound

Bio-Sep Bead

Some microbes that colonized the Bio-Sep[®] bead can utilize ¹³C labeled target compound.

obialinsights

Unit of measure

Amount of $~^{13}\text{C}$ relative to ^{12}C is expressed by the $\delta^{13}\text{C}$ notation

$$\delta^{13}C[\%_{0}] = \left(\frac{({}^{13}C/{}^{12}C)_{\text{Sample}}}{({}^{13}C/{}^{12}C)_{\text{Standard}}} - 1\right) \cdot 1000$$

The standard is a specific carbon-containing mineral from a specific location: Pee Dee Belimnite (PDB)

Units of $\delta^{13}C$ are $^{\circ}/_{\circ\circ}$ or "per mill"

$\delta^{13}C$ of COCs

$\delta^{13}C$ of COCs

For more information

- www.microbe.com
- Contacts
 - Kate Clark (<u>kclark@microbe.com</u>)
 - Casey Brown (cbrown@microbe.com)
- Telephone (865) 573-8188

