Selection of an Optimal Site-Specific Method for the Measurement of LNAPL Transmissivity

J. Michael Hawthorne, PG H₂A Environmental, Ltd. A Subsidiary of GEI Consultants, Inc.

Three Short Term LNAPL Transmissivity Measurement Methods are Available in ASTM E2856 Guidance for the Measurement of LNAPL Transmissivity

Hawthorne, J. Michael (2013) *LNAPL Transmissivity from Total Fluids Recovery Data, Part 1: Calculation Methodology*, Applied NAPL Science Review, vol. 3, issue 2, February 2013

What are baildown testing, manual skimming testing, and oil/water ratio testing?

Baildown/Slug Test

Hawthorne, J. Michael (2010) *LNAPL Transmissivity* (T_n) : *Remediation Design, Progress and Endpoints*, Texas Commission on Environmental Quality Annual Trade Fair and Conference, May 2010

Generalized LNAPL Transmissivity Testing Dynamics

Remove Fluids to Create Pressure Head Differential Quantify Recharge Rate & Drawdown (Gauging, Q_n, or OWR)

Calculate LNAPL Transmissivity A recent API nationwide statistical analysis of LNAPL transmissivity found that all methods except petrophysical calculation appear to generate similar (repeatable) values (insufficient data for slug testing)

Hawthorne, J. Michael, Dennis Helsel and Charles Stone (2015) *Nationwide Statistical Analysis of LNAPL Transmissivity*, unpublished research conducted by H₂A Environmental, Ltd. on behalf of The American Petroleum Institute

ASTM E2856-13 guidance for T_n test method selection, modified

Factor	Baildown (BD) Test	Manual Skimming (MS)	Oil/Water Ratio (OWR)
Waste Disposal	Minimal	Moderate	Large
Aquifer Extent	Small	Moderate	Moderate – Large
Capital Cost	Low	Low – Moderate	Moderate
Test Duration	Minutes – Months	Minutes – Days/Weeks	Minutes – Hours
SC1:	s _n sensitive	s _n sensitive	Can be s _n insensitive
SC2:	Equilibrium required	Equilibrium required	Equilibrium optional
SC3:	Recommend ANT>0.5 foot; Require ANT>0.2 foot	Works with any measurable ANT	Works with any measurable ANT
SC4:	Any hydrogeologic condition	Any hydrogeologic condition	Any hydrogeologic condition (Adjust calc for perched)
Power (air, electricity, etc.)	Useful but not necessary	Preferred but not necessary	Required

See ASTM E2856-13 for a more detailed discussion

Critical variables I'll focus on today in the selection of an optimal sitespecific test methodology for LNAPL transmissivity

The NAPL hydrogeologic condition can strongly affect the ANT in the well, requiring correction to determine the MNI

Modified after Kirkman (2009)

What is NAPL Drawdown?

Unconfined NAPL

Hawthorne, J. Michael (2014) Calculating NAPL Drawdown, Applied NAPL Science Review, vol. 4, issue 3, September 2014

Perched NAPL

ASTM 2011, Equation 9:

Ξ

Ξ

Ξ

Ξ

$$s_{nt} = Z_{AN^*} - Z_{AN(t)}$$

for $s_{nt} \leq Z_{AN^*} - Z_{pc}$

Where:

S_{nt} Z_{AN*}

Z_{AN(t)}

 Z_{pc}

NAPL drawdown at time t air/NAPL interface elevation for equilibrium conditions air/NAPL interface elevation at time t

NAPL/perching layer contact elevation

 ρ_r

=

NAPL/water density ratio

Drawdown - NW below

contining layer

AN

 $s_n = \Delta A N$

CGWS

MN

NAPL Drawdow

equals NAPL pressure

difference

equals change in AN interface

What is the frequency and magnitude of unconfined LNAPL?

Hawthorne, J. Michael, Dennis Helsel and Charles Stone (2015) *Nationwide Statistical Analysis of LNAPL Transmissivity*, unpublished research conducted by H₂A Environmental, Ltd. on behalf of The American Petroleum Institute

What are realistic Ranges of NAPL Drawdowns for unconfined NAPL?

Charbeneau, Randall (2007) *LNAPL Distribution and Recovery Model Volume 1: Distribution and Recovery of Petroleum Hydrocarbon Liquids in Porous Media*, Publication No. 4760, The American Petroleum Institute Hawthorne, J. Michael (2014) *LNAPL Transmissivity (T_n): Remediation Design, Progress and Endpoints,* Texas Commission on Environmental Quality Annual Trade Fair and Conference, May 2010

Hawthorne, J. Michael, Dennis Helsel and Charles Stone (2015) *Nationwide Statistical Analysis of LNAPL Transmissivity*, unpublished research conducted by H₂A Environmental, Ltd. on behalf of The American Petroleum Institute

What are some common conditions that help or hurt the ability to accurately measure T_n ?

"Helpful" Conditions (any method)	"Hurtful" Conditions (OWR beneficial)	
Low density LNAPL	High density LNAPL	
Low dynamic viscosity	High dynamic viscosity	
High NAPL saturation	Low NAPL saturation	
High hydraulic conductivity	Low hydraulic conductivity	
Rapid NAPL recharge (short time)	Slow NAPL recharge (long time)	
SUM: High T _n with low density	SUM: Low T _n with high density	
Small relative groundwater fluctuations	Large relative groundwater fluctuations	

Wetted Screen Length Water Transmissivity (T_w)

Keys to selecting the "optimal" site-specific T_n measurement method

- Know the NAPL hydrogeologic condition
- Understand your objective absolute or relative value for T_n?
- Know Groundwater Fluctuation Duration and Magnitude
 - Use method with small duration relative to GW fluctuation duration
 - Use method with large ${\rm s}_{\rm n}$ relative to GW fluctuation magnitude over the test duration
- If ANT<0.5 foot, consider OWR testing then MS (not BD)
- Critical zone is low T_n with high density and small ANT