

QUANTIFICATION OF VAPOR-PHASE RECOVERY

A presentation for

International Petroleum Environmental Conference 22

by

ROUX ASSOCIATES, INC. Environmental Consulting and Management www.rouxinc.com

<u>OUTLINE</u>

• Why quantify vapor recovery?

- General methodology for estimating equivalent freeproduct recovery
- Evaluation of methods for estimating thermal energy content of process stream

Purpose for Quantification

- Demonstrate that LNAPL plume volume is being reduced by more than just liquid-phase extraction
- Show remedial progress when liquid-phase extraction begins to diminish
- Provide option for reaching remedial endpoints

Cumulative Product Recovery Over Time

General Method

"Equivalent Free-Product" Definition: Volume of free-product that would need to be burned as fuel to produce the same amount of energy that is released by the combustion of the volatile gases within a given volume of soil vapor extracted by the system

- Conversion of gaseous SVE process air to flow rate in equivalent liquid free-product
- Relates the energy content of the vapor and liquid phases

Steps in Calculation

- Field measurements / samples
- Energy content measured and/or estimated from the influent SVE process air
- Vapor phase energy content converted to equivalent liquid phase energy content
- Liquid phase energy content converted to an equivalent free-product recovery volumetric flow rate
 - Based on measured unit weight of the free-product

ROUX

Assumptions

 The energy in the vapor phase is proportional to the energy in the liquid phase

- The heating value of the SVE stream is not influenced by any external source
 - Leaking natural gas
 - Biodegradation of non-petroleum organic matter
- The contribution of carbon dioxide to the overall energy content of the SVE stream can be neglected

Calculating Equivalent Recovery

$$Q_{fp,equiv} = \frac{24 q_{sve}}{(H_{c,fp})(\gamma_{fp,v})}$$

- Q_{fp,equiv} = equivalent free-product recovery in gallons per day (gpd)
- q_{SVE} = measured / estimated heating rate of the influent SVE process stream in BTU/hour
- H_{c,fp} = heating value / heat of combustion for the liquid free-product, in BTU/lb
- $\gamma_{fp,v}$ = unit weight of liquid free-product, in lb/gal

Heating Value of Vapor

- Thermal Method
 - Using temperature measurements
- Combustion Energy Method
 Using lab analysis
 - Using screening equipment

Thermal method

- Temperature set-point in oxidizer maintains chamber temperature by opening or closing valve to control supplemental fuel
- The amount of heat required to maintain set-point temperature is directly proportional to the flow of process air being heated

General Heating Rate Formula

$$\mathbf{q} = Q \ c_p (T_2 - T_1)$$

- q = heating rate input to the fluid to cause the desired temperature change;
- Q =fluid volumetric flow rate;
- $c_p =$ specific heat of the fluid being heated;
- T₂ = final temperature that the fluid is heated to (setpoint temperature);
- T_1 = initial temperature of the inlet stream.

$$\dot{q}_{tot} = \frac{Q_{tot} \times 1.1 \times (T_2 - T_1)}{AH}$$

• AH = available heat factor

Thermal Energy Balance

• q_{ng} is the heating rate of natural gas fed to the Flame-Ox in BTU/hr.

$$\mathbf{q}_{tot} = \mathbf{q}_{ng} + \mathbf{q}_{SVE}$$

 With known natural gas consumption, heating rate of SVE stream can be determined

Thermal Energy Method

Advantages

Inputs are easy to measure

 No special samples need to be collected and no special measurements are required beyond the process air flow rate, temperature and natural gas usage

Disadvantages

- Significant calibration and performance testing required
- Available heat factor not easily measured, variable to operating conditions
- Accuracy is limited when energy content of vapor stream is low relative to supplemental fuel

Combustion Method

- Utilizes the concentrations of the major compounds present in the stream
 - molecular and energy data of these compounds
 - estimate the theoretical amount of energy released during the combustion of those compounds
- The theoretical amount of energy released during the combustion of a flammable compound is equal to the volume of that compound multiplied by the heat of combustion of that compound (typically in BTU/ft³ for a gas)

Combustion Method Formula

$$\mathbf{q}_{c,i} = \frac{60C_i Q_{SVE} H_{c,i}}{1 \times 10^6}$$

- q_{c,i} = heating rate produced from the combustion of a given flow rate of a volatile component, (i);
- C_i = concentration of the compound in the SVE process stream, in ppmv;
- Q_{SVE} = SVE process stream volumetric flowrate in acfm;
- H_{c,i} = heat of combustion of the compound (i), as published in reference literature, in BTU/ft³;

Combustion of Process Stream

$$\dot{q}_{SVE} = \sum_{i=1}^{n} \dot{q}_{c,i} = \sum_{i=1}^{n} \frac{60C_i Q_{SVE} H_{c,i}}{1 \times 10^6}$$

- SVE process stream heating factor is equivalent of the sum of all component combustion energies
- Lab analysis for methane and TPH can simplify this summation

Combustion Method

Advantages

 Direct measurement of energy content

 No factors in the equation that are estimated (such as Available Heat) – leads to greater accuracy

Disadvantages

Frequent data required – samples or screening

> Use screening equipment such as Hydrocarbon Flame Ionization Detector instead of lab analysis

Real-time data without need for frequent lab analysis

Comparison to Liquid Phase

ROUX

Summary

 SVE systems are removing LNAPL mass in the vapor-phase

- Quantifying this rate of degradation is valuable
 - Vapor phase will eventually become primary removal mechanism
- There are different methods of calculating
 - We have found Combustion Method to yield most consistent results

References

- American Chemistry Council, 2008. Working with Modern Hydrocarbon and Oxygenated Solvents: A Guide to Flammability. Solvents Industry Group
- ITRC, 2009. Evaluating LNAPL Remedial Technologies for Achieving Project Goals. Technical / Regulatory Guidance, ITRC LNAPLs team.
- TSI, Inc., 2004. Combustion Analysis Basics. An Overview of Measurements, Methods and Calculations Used in Combustion Analysis.
- Eclipse, Inc., 2004. Engineering Guide. Tenth Edition EFE-825, 1/13.
- Energy Efficiency and Renewable Energy, 2007. Energy Tips Process Heating. Industrial Technologies Program. Process Heating Tip Sheet #1.

QUESTIONS?

Thank you for your time!

Contact: Ian Holst <u>iholst@rouxinc.com</u> Justin Kennedy, P.E. <u>ikennedy@rouxinc.com</u>