

Permeable Reactive Barrier Treatment for Groundwater Exiting a NAPL Contaminated Area

Donald Pope | IPEC 2015 Conference

Agenda

- Site Description
- Description of Non-aqueous phase liquid (NAPL)
- Description of Permeable Reactive Barriers
- Laboratory Treatability Study Design
- Laboratory Treatability Study Results
- Recommendations
- Conclusion

Site Description

- Site is located in Michigan
- Water treatment property
- Groundwater contains Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) above the Michigan Department of Environmental Quality (MDEQ) generic clean up criteria
 - Highest concentrations include: benzene, toluene, ethylbenzene, and xylenes (BTEX compounds)
 - Naphthalene, trimethylbenzene, trichloroethylene (TCE), and cis-1,2dichloroethylene (cis-1,d-DCE)
- Groundwater is migrating off-Site at locations that cover approximately 2,500 linear feet along the Sites western property boundary

Remedial Option under Consideration

- A bentonite slurry wall constructed along the western property boundary
- The insertion of a funnel and gate permeable reactive barrier (PRB) system into a slurry wall to treat impacted groundwater in-situ as it leaves the Site

Laboratory Study

- A bench-scale treatability study was performed to assess the potential technologies for their ability to remove the VOCs, SVOCs, and inorganics from the groundwater as it flows through the gate
- The in-situ remedial technologies evaluated in the treatability study for the gate system included enhanced biodegradation, ozone sparging, and adsorption

Description of Permeable Reactive Barriers (PRB)

- Passive treatment that relies on groundwater flow to bring contaminants to reactive media
- Permanent structure which intercepts and treats impacted groundwater
- Physical, chemical, and/or biological processes can be used as removal mechanisms for contaminants
- Con consist of a trench or rows of injection wells
- Various reactive media can be used for PRBs

to reactive barriers have the potential to lower the cost. The effectiveness of groundwater cleanup.

Description of Permeable Reactive Barriers (PRB)

- Commonly used trench reactive media include:
 - Zero Valent Iron (ZVI)
 - Zeolites
 - Granular Activated Carbon (GAC)
 - Organic Media
 - Proprietary Substrates such as EHC
 - Chemical Oxidation agents
 - Chemical Reducing Agents
 - Emulsified Zero Valent Iron (EZVI)
 - Ozone Sparging

Advantages of PRBs

- Passive, no energy input
- No aboveground structures
- Limited maintenance
- Low O&M costs
- Contaminant concentrations are rapidly reduced upon contact with the media
- Long lifetime, 10 to 20+ years

Disadvantages of PRBs

- DNAPL not treated effectively
- Dissolved metal species may interfere with PRB longevity (clogging)
- Detailed understanding of hydraulic flow characteristics (overtopping)
- Installation can be expensive and complex (deep plumes)
- May need to be maintained indefinitely if source is not removed

(e):	$\left(\mathbf{b} \right)$
	2

Types PRBs

Treatability Study Objectives

- Determine the empty bed contact time (EBCT) for a GAC only column
- Determine whether pre-treatment with manganese green sand would enhance the performance of the GAC columns
- Determine the GAC change out frequency
- Determine the effect of sparge rates that can be achieved in a waster water treatment place setting on the residence times for aerobic treatment or ozone treatment
- Determine the optimum technology or combination of technologies for groundwater treatment

Initial Groundwater Characterization

Parameters	Units	GW-001
1,2,4-Trimethlybenzene	μg/L	434
Benzene	μg/L	103,000
Ethylbenzene	μg/L	7,800
Naphthalene	μg/L	5,780
Toluene	μg/L	19,600
m/p-Xylenes	μg/L	1,100
O-Xylenes	μg/L	938

- GAC Test Set Up:
 - 3 Columns were set up as follows:
 - Column 1: Groundwater pumped in at a flow rate of 1.25 mL/min
 - Column 2: Groundwater pumped in at a flow rate of 2.5 mL/min
 - Column 3: Groundwater pumped in at a flow rate of 5 mL/min
 - Effluent samples from the columns were analyzed for VOC after 1 hour of operation and then every 24 hours thereafter until breakthrough was observed

- Biodegradation Test Set Up:
 - Testing was performed to determine the parameters for biological treatment
 - Two identical glass columns were run as follows:
 - Column 1: Sand only (Control)
 - Column 2: Sand, air, and nutrients
 - Site groundwater pumped using a multi-channel pump into the bottom of each of the columns at a rate that would give a hydraulic retention time (HRT) of 2.5 hours
 - Air was sparged into each column at 10mL/min
 - The water from the tops of the columns was collected after 24 hours and analyzed for VOC
 - The flow rates were slowed to increase the HRT to increase the removal of the VOC present in the groundwater

- Ozone Test Set Up:
 - Two identical columns were run as follows:
 - Column 1: Sand only (Control)
 - Column 2: Sand and ozone sparger
 - Ozone was sparged into column 2 at 20 mL/min
 - Site groundwater pumped into the bottom of each of the columns at a rate that would give a HRT of 5 hours
 - Groundwater was collected after 5 hours of operation
 - The flow rate of the columns were decreased to increase the HRT to increase the VOC removal
 - The ozone sparge rate was increased to increase the VOC removal

Ozone Generator Used to Produce Ozone

GAC Test Results

Parameters	Column 1	Column 2	Column 3
Flow Rate	1.25 mL min ⁻¹	2.5 mL min ⁻¹	5 mL min ⁻¹
EBCT	38.4 min	19.2 min	9.6 min
Volume at Breakthrough	33.4 L	32.4 L	14.8 L
Benzene Loading Rate	0.28 g benzene/g carbon	0.27 g benzene/g carbon	0.12 g benzene/g carbon

- An EBCT of 9.6 minutes is sufficient to treat the water
- A lower loading of benzene was achieved which would require more change outs of the carbon
- An EBCT of 19.2 minutes would reduce the change out frequency
- At an EBCT of 19.2 minutes 1,000 pounds of carbon would treat approximately 324,000 gallons of water prior to becoming saturated

Biodegradation Test Results

HRT of 5 Hours

Biodegradation Test Results

HRT of 2.5 Hours

GHD

Ozone Test Results

	HRT of 5 hours 20 mL/min Ozone	HRT of 7 hours 20 mL/min Ozone	HRT of 7 hours 30 mL/min Ozone	HRT of 7 hours 40 mL/min Ozone
% Removal of 1,2,4- Trimethlybenzene	55.1%	0.00%	83.7%	51.4%
% Removal of Benzene	54.0%	88.5%	83.3%	89.5%
% Removal of Ethylbenzene	47.9%	87.0%	76.2%	37.5%
% Removal of Naphthalene	<1%	<1%	96.0%	<1%
% Removal of Toluene	52.6%	90.1%	86.0%	91.8%
% Removal of m/p- Xylenes	48.0%	88.4%	86.8%	91.3%
% Removal of O- Xylenes	43.1%	88.6%	80.5%	86.6%

Although significant removal of VOC was observed at an ozone sparge rate of 30mL/min and 40mL/min, the VOC concentrations remained elevated. The testing was discontinued since satisfactory removal of VOC was unlikely to occur.

Recommendations

- GAC Tests:
 - EBCT to 19.2 mins
 - Change out approximately every 324,000 gallons
- Biodegradation Tests:
 - The addition of nutrients to the groundwater and the provision of air to the biologically active filter
 - The addition of a microbial inoculum is required since the groundwater contained the bacteria necessary for the treatment of the water
 - HRT of 2.5 hours
- Ozone Tests:
 - Ozone sparging would not treat the VOC in the groundwater within a practical time period, therefore, this technology is not recommended

Conclusion

- Permeable Reactive Barriers are effective technologies for the treatment of groundwater before migrating off-Site
- Many different media are available for use in PRB and the selection of the medium depends on the contaminant(s) and site characteristics
- PRB can be installed using trenches or injection wells
- GAC and biodegradation are effective PRB media

www.ghd.com