

Solving the world's hardest problems.

Solving the world's hardest problems.

Practical Treatment of Produced and Flow-back Waters for Re-use or Surface Discharge

Eric Ringler, Bill Chatterton (SR) Joon H. Min, Allen Chan (BKT Co. LTD) Dave Philbrook (M2 Water Treatment Inc.)

Technologies Evaluated

Treatment

- Magnetic Ballast Clarification (MBC): M2 Water Treatment
- Anti-fouling Membrane (FMX): BKT Co. LTD

Waste Management

- Stabilization/Solidification
- Hydrogel Adsorption and Dehydration

Project Overview

Bench Scale Investigations

Informed:

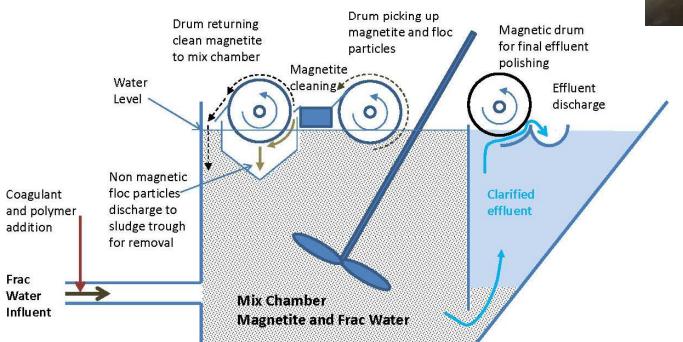
- MBC polymer selection and dosing
- FMX membrane selection
- Performance characterization
- Optimization of operating parameters for both processes

Provided:

- Preliminary performance data
- Justification for field demonstration planning

Project Overview

Pilot Scale Field Demonstration

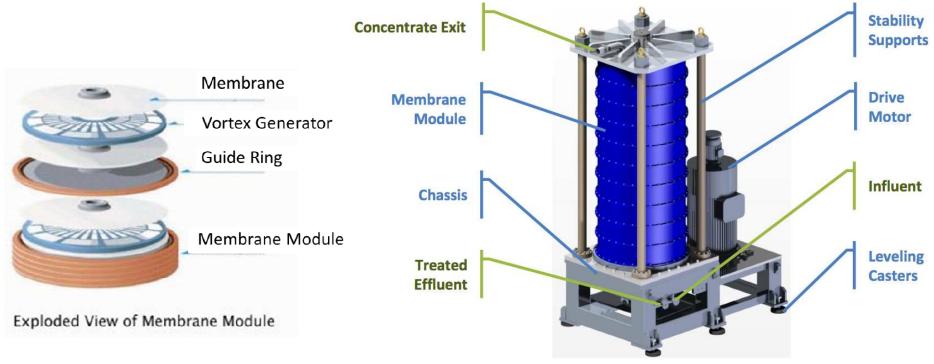

Objectives:

- Process a variety of feed waters
- Define treatability
- Determine removal efficiency (key analytes)
- Characterize treated water quality
- Characterize waste streams
- Model economics

Treatment Technologies Evaluated

Magnetic Ballast Clarification (MBC)

- Effective solids removal (>95%)
- Small footprint (5-10% conventional)
- Magnetite is recovered/re-used
- Continuous chemical/physical process

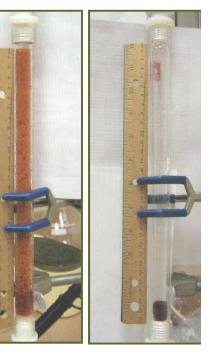


Treatment Technologies Evaluated

Anti-fouling Membrane (FMX)

- Tolerates high solids (3-5%)
- Effective solids removal (>95%)
- Range of waters/treatment goals (MF, UF, NF)
- With NF, removes divalent ions (~ 40%)
- Batch or continuous process

Waste Management Technologies Evaluated


Solidification/Stabilization

- S/S includes mixing waste with coal fly ash, gypsum and/or an activation agent (cement or lime).
- Effective Contaminant Capture
- Solids pass TCLP

Hydrogel Adsorption and Dehydration

- Effective contaminant capture
- Solids pass TCLP
- Waste volume reduced >90%

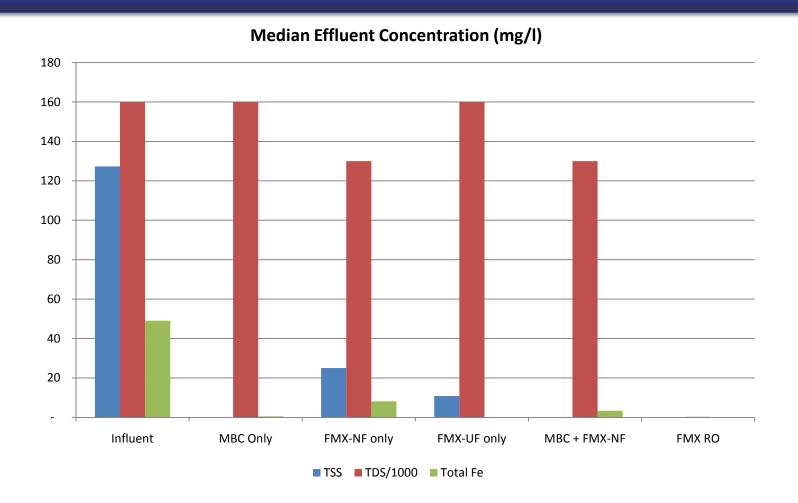
Field Activities

Down-hole disposal site in Permian basin Sampling and analysis for:

- Untreated feedwaters (baseline)
- MBC alone, FMX alone
- MBC followed by FMX
- FMX followed by RO (sample from Eagle Ford)

Field Performance

- MBC Overflow Meets Re-use Standards (e.g., TSS < 50 mg/l)
 - **→** 99% Forward Flow
- FMX Permeate (UF or NF) also Meets Re-use Standards
 - **>** 80% Forward Flow (typical)
- RO Permeate Can Meet NPDES Standards (e.g., TDS < 500 mg/l)


Field Performance

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% MBC Only FMX-NF only FMX-UF only MBC + FMX-NF FMX RO TSS TDS Total Fe

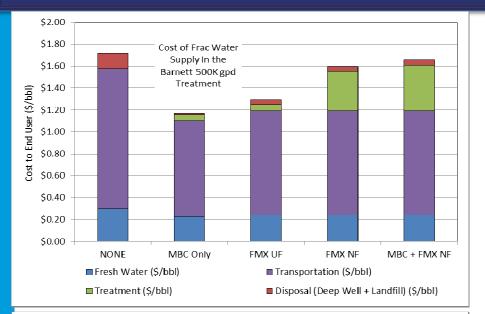
Median Removal Efficiency (%)

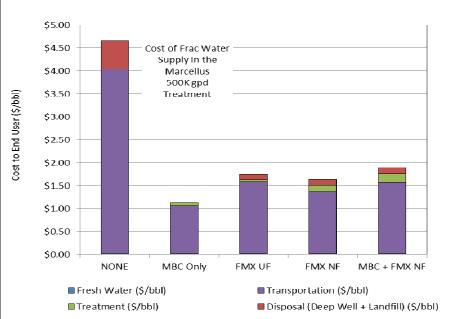
- High solids removal efficiency (by any approach tested)
- FMX-NF removes ca. 20% TDS (ca. 40% of divalent ions)

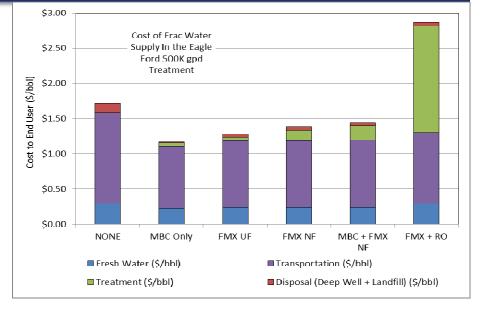
Field Performance

- TSS << 50 mg/l
- RO removes remaining TDS (but limited to < 60k mg/l influent)

Economics


MBC, FMX, RO Treatment Costs (\$/bbl) (includes CapEx and OpEx - 10 year lifetime)


	100,000 gpd	500,000 gpd	
MBC	0.79	0.22	Provided by vendor
			Low Cost Provided by Vendor for flux = 100
FMX-UF	0.17	0.17	LMH
			High Cost Provided by Vendor for flux = 60
FMX-UF	0.29	0.29	LMH
			Low Cost Provided by Vendor for flux = 40
FMX-NF	0.58	0.58	LMH
			High Cost Provided by Vendor for flux = 10
FMX-NF	2.32	2.32	LMH
RO	5.88	5.88	Private quotes from membrane companies


• Plant scale representative based on detailed analysis

- MBC has significant economy of scale, FMX does not
- FMX cost directly impacted by flux achieved

Economics

Use of MBC or FMX, separately or in combination, to treat water to re-use standards appears cost effective compared to baseline use of 100% fresh water for well completion and down-hole disposal of wastes. This is true especially for the Marcellus, but also for Barnett and Eagle Ford scenarios.

Conclusions

- Re-use Quality: MBC or FMX (NF or UF), are separately able to treat produced or flowback waters sufficiently to meet common criteria for re-use. MBC treatment alone or FMX-UF are low cost options for treatment for re-use. There is a definite cost advantage to larger plant size for MBC.
- MBC treatment produced acceptable re-use quality water for 8 of the 9 waters tested during the field demonstration. With preoxidation, MBC produced acceptable quality water for re-use for all of the five waters tested. *MBC performance was unaffected by the TDS concentration of the water treated.*
- FMX nano-filtration alone produced acceptable quality water for reuse for all five of the waters tested. *FMX ultra-filtration can also produce acceptable quality water for re-use at lower cost than nano-filtration.*

Conclusions (Continued)

- Economics: For Barnett and Eagle Ford, a significant fraction of total costs is fresh water (16% to 23%). The market in the Barnett and Eagle Ford, is to provide alternatives to fresh water.
- ✓ In the Marcellus costs are dominated by transportation (68% to 86%). The market in the Marcellus is to alleviate the need to transport waste fluids to distant deep well injection sites.
- FMX in combination with RO is capable of treating water to NPDES discharge levels. The FMX+RO option is cost prohibitive compared to deep well injection in the Barnett. Where applicable (TDS <60k mg/l), FMX+RO may be cost competitive against the long haul distances to deep well injection sites.</p>
- Both hydrogel and solidification/stabilization were effective at preparing FMX concentrates for safe landfill disposal. *MBC sludge volumes are minimal.*