Phytoremediation of PAHs: Designing for Success

Michael T. Jordan

22nd International Petroleum Environmental Conference November 18, 2015

Outline

Phytoremediation Primer

- Benefits
- Mechanisms
- Limitations
- Design Considerations
- Case Study #1: Former Foundry
- Case Study #2: Burn and Burial Pit

Potential Benefits

- Cost savings of up to 50 to 80 percent
- Less invasive and destructive than other technologies
- Ecological benefits (increase biodiversity, habitat, etc.)
- Aesthetic improvements
- May educe erosion
- Shade from plants may reduce energy needs
- Vegetation can help sequester carbon

Mechanisms

- Phytosequestration
- Phytohydraulics
- Phytoextraction
- Phytodegradation
- Phytovolatilization
- Rhizodegradation
 - breakdown of contaminants within the plant root zone
 - plant exudes sugars, amino acids, enzymes that stimulate bacteria
 - roots provide additional surface area for microbes to grow
 - roots provide a pathway for oxygen transfer
 - best used in soil
 - PAHs, chlorinated solvents, pesticides, PCBs, BTEX

Limitations

- High concentrations may be toxic
- Impacts need to be accessible to plants
- O&M requirements
- Concern with introduction of non-native species
- Remediation timeframe may be slow

Frequency of Use

Remedy selection for superfund sites:

- phytoremediation was selected for <2% of remedies
- Why?
 - Limitations
 - Few vendors to partner with
 - Inconsistent track record.

In an evaluation of 20 sites, only 9 sites had significant declines in concentrations compared with unvegetated controls (EPA 2006)

Decreases Client Confidence

Reasons for Poor Performance

Poor CSMs

■ Biological Systems ≠ Mechanical Systems

in some cases though, it is not a limitation or failure of the technology ... it's a failure of the design

Outline

- Phytoremediation Primer
 Design Considerations

 Treatability Studies
 - Plant Selection
 - Installation
 - Operation and Maintenance
- Case Study #1: Former Foundry
- Case Study #2: Burn and Burial Pit

Design Considerations

Conceptual Site Model

- COCs (co-mingled)
- Concentrations
- Weathered
- Distribution
- Depth to groundwater
- Existing site use

Implications

- Treat entire suite?
- Phytoxicity?
- Recalcitrant?
- Can Plants Access?
- Installation method?
- Competition?

Polycyclic Aromatic Hydrocarbons

- Organic compound with multiple aromatic rings
- Properties
 - Low solubility
 - Heavy compounds
 - Low volatility
 - Recalcitrant

- Low MW PAHs can biodegrade aerobically
- Weathered PAHs less likely to degrade via rhizodegradation
- Large PAHs (3+ rings) are more recalcitrant

Depth of Impacts

- Root Depth = COC Depth
- Grasses/Legume ~1 ft
- Prairie Grass 10+ ft
- Trees 5-10+ ft
- 70-80% in upper 2 ft
- Installation methods
 - Poles
 - Cased boreholes
- Roots reach max of 5 ft into of saturated zone

Plant Selection

Grasses

Trees

Considerations ...

- Degradation mechanism
- native plants well adapted
- hybrid species special attributes

llerracon

- monoculture vs. multiple species
- fruit/vegetables/flowers
- annual v. perennial
- deciduous vs. evergreen
- **O&M** requirements
- climate
 - soil

Plant Species for PAHs

- Mixed grasses
- Fescue
- Alfalfa
- Switchgrass
- Sudangrass
- Prairie grasses
- Perennial ryegrass
- Winter rye
- Bermuda grass
- Tall Fescue
- Little bluestem
- Willow trees
- Hybrid poplars

Where to Start?

- Literature
 - Case Studies
- A word of caution re: spiked lab studies
 - Dibenzo(a,h)anthracene

Degradation (mg/kg per day)	COCs	Туре	Plant	Reference
0.0019	PCP, PAHs	greenhouse	rye grass	Ferro 1997
0.0006	various PAHs	greenhouse	rye grass	Rezek 2008
0.127	spiked	greenhouse	rye grass	Binet 2000

Lab Success ≠ Field Success

Toxicity

- 810 mg/kg (C₅₋₂₈) reduced transpiration 10%
- 3,910 mg/kg (C₅₋₂₈) reduced transpiration 50%
- Several species can survive 40,000 mg/kg
- gasoline > diesel fuel
- unweathered fuel > weathered fuel

Plant Installation

Timing

- Planting density
- Irrigation
- Fertilization
- Aeration (breather tubes)
- Methods
 - Grasses: broadcast vs. grain drill
 - Trees: Auger vs. DPT vs. container
 - Cased boreholes

Operations and Maintenance

- Fertilization
- Irrigation
 - 1-2 inches per week
 - drip, spray, vertical drip
 - use of groundwater as source
 - install trees into water table
- Harvest plants (primarily metals)
- Re-planting
 - Mortality
 - Annuals and succession crops
- Weed control: mowing, mulch, spray (compatible)
- Pest, disease, etc

Time

- Function of:
 - initial concentration
 - remedial goal
 - plant species

Cost

- Function of:
 - Install method
 - Plant type
 - O&M and Irrigation needs
 - Treatment Area

Closure and Contingency

Performance Monitoring

- Soil samples
- Mortality
- Concentrations trends
- Control plot
- Future Site Use
- Contingency

Outline

Phytoremediation Primer
 Design Considerations

- Case Study #1: Former Foundry
 - Background
 - Design

Case Study #2: Burn and Burial Pit

Case Study #1: Background

- South Beloit, IL
- 1852-2003: PrimeCast Foundry
- 1939-1960s: service stations
- Brownfield site
- Re-develop as a public green space
- Ductile, gray iron and stainless steel castings
- PAH impacts in soil
 - extend over ~5 acres
 - depth of up to 3 feet

Case Study #1: Background

- benzo(a)pyrene:
- benzo(b)fluoranthene:
- dibenzo(a,h)anthracene:
- up to 130 mg/kg up to 190 mg/kg up to 40 mg/kg

- Heavy MW
- Relatively insoluble
- Recalcitrant

- Goal: re-develop as a public park
- Design Approach:
 - Phytoremediation
 - Successive Plantings
 - Hot Spot Excavation
 - Calculate site-specific remediation objectives
- Iterative approach to determine areas of phytoremediation vs. excavation

- Step 1: establish remedial objective
- Step 2: evaluate plant species
- Step 3: determine location of phytoremediation
 - iterative approach to select timeframe

 $- [A_t] = [A_o] - (k)(t)$

[A_t] remedial objective calculate site specific
[A_o] max initial concentration soil analytical
t length of active remediation 3, 5, 7, 10, 20 years
k decay rate literature

- Estimate decay rate (k)
- Example: benzo(a)pyrene

	Degradation (mg/kg per day)	COCs	Туре	Plant	Reference
	0.023	PCP, PAHs	greenhouse	rye grass	Ferro 1997
4	0.01	various PAHs	greenhouse	rye grass	Rezek 2008
	0.30	MGP site	greenhouse	willow	Spriggs 2005

Calculate Maximum Initial Concentration (mg/kg)

 $[A_o] = [A_t] - (k)(t)$

Remediation Timeframe	3	5	7	10	20
Benzo(a)pyrene	13.1	20.4	27.7	38.6	75.1
Benzo(b)fluoroanthene	29.9	44.5	59.1	81.0	154.0
Dibenzo(a,h)anthracene	1.5	1.9	2.3	3.0	5.2

Conventional Cover Crops

- Buckwheat (dense roots)
- Rye Grain (winter cover)
- Successive Plantings
 - Multiple buckwheat plantings
 - Rye extends growing season
- Established planting methods
- Readily available equipment
- Contingency Plan

June 2015

August 2015

llerracon

Outline

Phytoremediation Primer
Design Considerations
Case Study #1: Former Foundry

- Case Study #2: Burn and Burial Pit
 - Background
 - Design
 - Preliminary Results

Case Study #2: Background

- USCG Air Station
- Located on Pasquotank River
- Unlined burn and burial pit
- Occurred from 1939-1950
- Groundwater: ~6 ft bls
- Soils: mainly silty sands
- COCs:
 - PAHs (0-6 ft bls)
 - As and Pb (upper 2 ft)

- Detected 17 PAHs
- Total PAHs
- Benzo(a) anthracene
- Benzo(a) pyrene
- Benzo(a) fluoranthene up to 65 mg/kg

- up to 646 mg/kg
- up to 48 mg/kg
- up to 49 mg/kg

- No time constraints
- Selected trees to access impacts up to 6 ft bls
- Mixture of black and white willows

Estimate decay rate (k)

Benzo(a)pyrene

	Degradation (mg/kg per day)	COCs	Туре	Plant	Reference
	0.023	PCP, PAHs	greenhouse	rye grass	Ferro 1997
	0.01	various PAHs	greenhouse	rye grass	Rezek 2008
	0.30	MGP site	greenhouse	willow	Spriggs 2005

Estimate 20-25 years to reach ROs

Case Study #2 Installation

- Plant on 10-centers
 - Plant as 'poles'
- Use breather tubes
- Auger boreholes to water
- Roots extend outward
- Planted 2007

Case Study #2 Results

Acknowledgments

- Linda Yang, Terracon
- Matt Catlin, Terracon
- Keary Cragan, USEPA
- Steve Colantino, Illinois EPA
- Mike Charles, Illinois EPA
- Ted Rehl, City of South Beloit
- Leilani Woods, USCG
- Contact Information Michael Jordan
 <u>Michael.Jordan@Terracon.com</u> 919-201-0363

