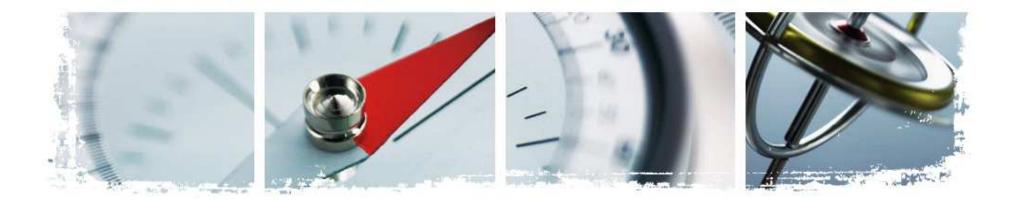
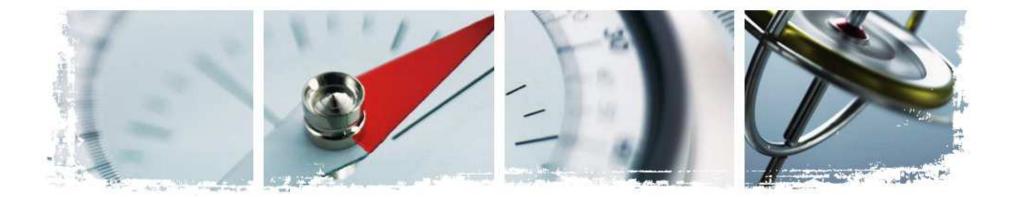


Navigation Options for Directional Environmental Wells



Overview


- What is *Navigation* in an HDD well?
- Locating vs. Steering
- Available Options
- Case Studies

What is Navigation?

Determining present location and trend of downhole assembly and directing it along a desired path.

- Detects or transmits drill head location
- Provides 3D data on bit pitch, roll & yaw
- Calculates and/or confirms depth
- Provides steering corrections
- Integrates with directional capability to steer the desired path

Steering vs. Locating

Steering directs the drilling tools along the desired path

Locating shows you the current bit position...

Steering Accuracy

Steering accuracy depends on

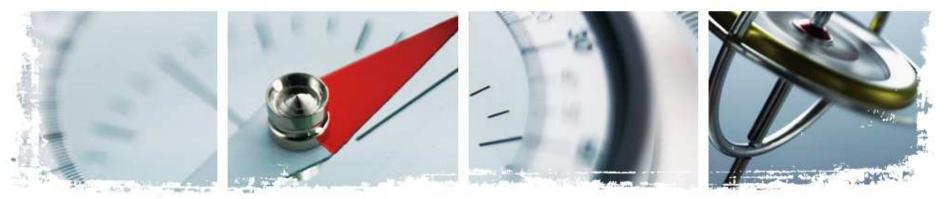
- Lithology
- Tooling
- Driller skill

Locating and Steering accuracy are not synonymous!

 Equipment can locate to 1/10 of 1% pitch, but likely can't steer that accurately

Lithology/Geology

- Grain size distribution
- Compaction
- Matrix
- Cementation
- Fractures / Jointing


Hard Vashon Till – Puget Sound

Lithology/Geology Challenging Drillingleal Drilling! Non-celhe Cohesive Cobbles-bounders Fine-mediu Compact No cemental allo

Locating Accuracy

Locating systems are very accurate...

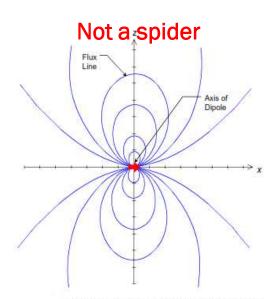
- Positional accuracy within 1-2% of depth
- In many cases, positional accuracy in inches
- Accuracy affected by:
 - Depth
 - Active interference
 - Passive interference

Active Interference

Passive Interference

US Dept. of Justice


Locating System Fundamentals

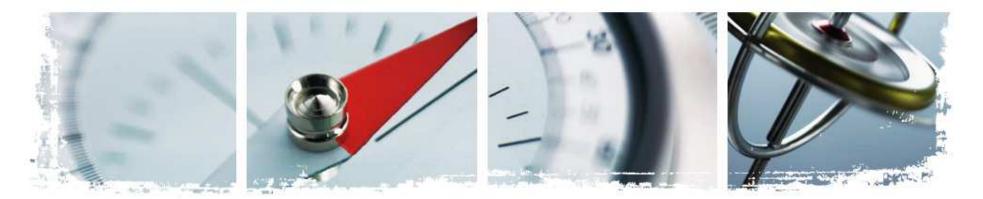

- Magnetic
 - Electromagnetic
 - Geomagnetic
- Inertial/Gyroscopic
- Walkover vs. "Wireline"
 - All walkover systems are electromagnetic
 - "Wireline" systems may be magnetic or inertial

Walkover Systems

- Electromagnetic systems
 - Powered by battery or rig (wire)
 - Field generated by downhole sonde
 - Lines of flux detected by handheld device
- Depths 0-50 (80) feet
- Accuracy ~ 2% of depth (± .5 ft. @ 50' depth)

Flux Lines Produced by a Dipole Transmitter

Walkover Setup



• Path must be visually marked

Walkover Pros & Cons

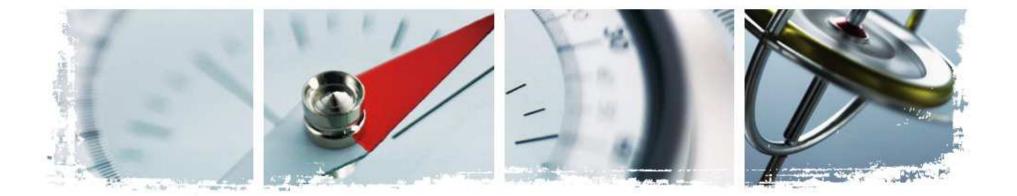
- Least expensive method (no added cost)
- Minimally intrusive
- Any sized drill rig
- Minimal setup
- Most affected by interference
- Limited to about 75' in ideal conditions

Geomagnetic Systems

- References geomagnetic north pole
- Requires wireline for power/signal
- DCI Short Steering Tool (SST) or Sharewell Magnetic Guidance System (MGS)

Geomagnetic Setup

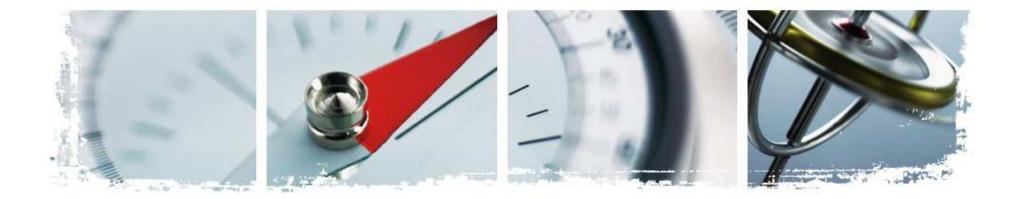
- Requires careful setup of reference azimuth
 - Isolation from large metallic objects, magnetic fields, etc.
 - Entry point and bore azimuth should be surveyed


Geomagnetic Pros & Cons

- No over-tool access needed
- Can fall back to walkover operation (SST)
- More expensive than walkover, less than other options
- May be affected by strong magnetic fields
- Limited contractor adoption

Coil Tracking Systems

- Enhancement to magnetic guidance systems
- Uses surface coil to create electromagnetic field to overcome interference
- Depths to ~ 200 feet
- Accurate to 2% of vertical bore depth
- TruTracker + Sharewell Magnetic Guidance System (MGS)

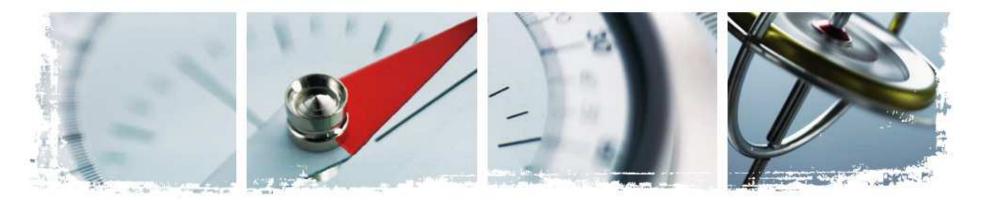

Coil Setup

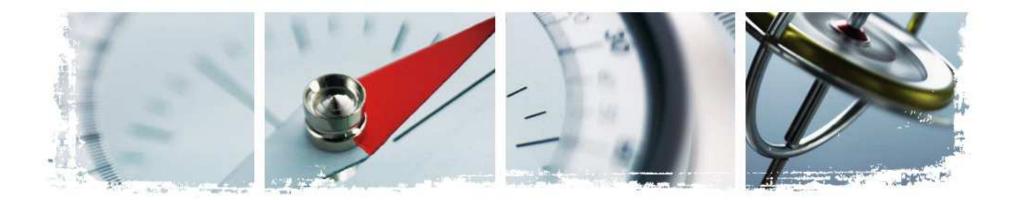
- Access for coil installation
- Traffic accommodations, etc.
- Precision survey needed of coil configuration

Coil Pros & Cons

- Accurate to most environmental well depths
- Intrusive access required to set coil
- Traffic accommodations, etc.
- Powerful fields can still cause interference

Inertial Systems


- Reference internal solid-state gyro
- Require wireline for power/signal
- Based on inertia, not magnetics
- Extremely accurate
- DrillGuide Gyroscopic Steering Tool


Inertial Systems Pros & Cons

- No over-path access required
- No depth limitations
- Immune to active or passive interference
- Requires wireline for power/signal
- Heavy tooling requires larger rig
- About \$7-8000/day locating only

Selecting a System

- Depth 1st cut, eliminates walkover
- Access 2nd cut, eliminates walkover, coil
- Interference
- Cost

Case #1: Secure DOE Facility

- Legacy DOE site with high security DOD tenants
- DCI Digi-Trak F5 with SST
- SST used for all under-building drilling
 - Walkover used from rig to edge of building and to confirm locations after exiting secure area inside building
 - Walkover receiver used in combination with magnetic sensor to locate manually when a control box failed
- 8 wells
 - 4 x 19' deep; 4 x 29' deep
 - 350-470' long
- Night shift to accommodate tenant activities.

Case #2: Longest Blind AS Wells

- Longest single-ended air sparge wells yet installed – two wells, ~1500' long
- 130' deep beneath active manufacturing facility
- DrillGuide Gyroscopic Steering Tool / SlimDril locating technician
- Bore chased with DTD Knock Off tooling to place well screen and riser

Questions and Contact Info

Directed Technologies Drilling, Inc. 100 Rolling Ridge Drive Bellefonte, PA 16823 800-239-5950

