vestigating Pathways of Sulfidogenesis i osulfate-Reducing *Halanaerobium* Speci

Annette De Capite

Department of Microbiology, University of Oklahoma

Ifidogenic Bacteria

- fate-reducing bacteria
- Sulfate (SO_4^{2-}) Sulfite (SO_3^{2-})
- fur-reducing bacteria
- Elemental sulfur (S_8)
- sulfate-reducing bacteria hiosulfate (S₂O₃²⁻)

servations

-4 M CI⁻, 49°C

lanaerobium!

SRB?

erobic fermenters

non to high salt, high erature oil production 's.

Middle East Field 16S Results (OU Biocorrosion

aterials

Sample	[Cl ⁻] (Molar)	Temperature
Angola production water	1.5	49°C
Viddle East Field production water	2.5	49°C
European Oil Reservoir	2.5	37°C

h Temperature, High Salt Production Wate

hments established under fermentative and thiosulfate-reducing conc

Ianaerobiaceae Isolation Results

TR denotes species confirmed for thiosulfate re Bold strains represent species used in this

0.02

nus Halanaerobium

- nicutes
- gate Anaerobes
- gate halophiles
- olated from saline production waters, brine kes, and microbial mats
- nentative metabolism
- not reduce sulfate!

Decies produce sulfide from the Luction of thiosulfate and sulfur.

urces of Sulfate and Thiosulfate

ate

- luction waters
- water
- rconversion to or sulfur anions

<u>sulfate</u>

- duction waters
- water
- dation of ides

ecular Detection of Sulfidogenic Bacteria

16S rRNA ger Functional ge

Applications

Assess if microbial community has the genetic potential for sulfidogenesis.

<u>Caveats</u>

Does not confirm viability of bacteria or activity of sulfidogenic enzymes.

Cultivation and physiology

Reductase

Dissimilatory Sulfite Reductase

nvestigating Enzymatic Pathways

- Assess if other sulfur anions are reduced
- Evaluate rhodanese activity
- Identify end products of thiosulfate reduction
- Determine sulfide/thiosulfate ratio
- Genomic analysis

Sulfidogenesis in *H. vreelandii*

Sulfide produ from reduction $S_2O_3^{2-}$ and S_8

Thiosulfate reduction also confirmed in H congolense an OKU7

Significantly different compared to fermentative, Student's t-test, p-value

wth of *H. vreelandii* in the Presence of Sulfur Anion

Similar results observed for H.congolense and C

The Effect of Sulfite on Growth of *H. vreelandii*

wth is improved as sulfite concentration decre

nvestigating Enzymatic Pathways

Assess if other sulfur anions are reduced

- Elemental sulfur and thiosulfate are reduced to sulfide.
- Sulfite inhibits growth

2. Evaluate rhodanese activity

odanese Activity: Quantification of Thiocyanat

iocyanate

Ferric nitrate reagent

iocyanate can only be oduced from rhodanese!

danese activity observed II *Halanaerobium* strains tested! Iron-thiocyanate comp Measure absorbance of supernatant at 470 nm

iocyanate is only detected when culture is amended with cyanide.

nvestigating Enzymatic Pathways

- Evaluate rhodanese activity
- Both sulfidogenic and non-sulfidogenic species of Halanaerobium possess rhodanese activity.
- Only a fraction of the predicted sulfite is detected in the rhodanese assay.
 - Where does the sulfite go?

Identify end products of thiosulfate reduction

te of Sulfur Anions

- ulfate was not roduced.
- ulfide was generated
- s an end product of
- iosulfate reduction
- hiocyanate was
- roduced when cyanide
- as present.
- ulfite was not detected
- vivo, but detected in w quantities in the
- odanese assay.

nvestigating Enzymatic Pathways

Identify end products of thiosulfate reduction

- Thiosulfate disproportionation can be ruled out as an operable pathway.
- Rhodanese and thiosulfate reductase cannot not be excluded.
- Sulfite must be metabolized to prevent growth inhibition

Determine sulfide/thiosulfate ratio

osulfate: Sulfide Ratio

- For every molecule of hiosulfate reduced, two nolecules of sulfide are generated (2:1).
- Suggests that both hiosulfate and sulfite
- eductases are operable.
- Sulfite as an intermediate. Questions the applicability of he rhodanese reaction.

nvestigating Enzymatic Pathways

Determine sulfide/thiosulfate ratio

- 2:1 Both sulfur atoms of thiosulfate are reduced to sulfide
- Strongly suggests the activity of a sulfite reductase
- Genomic analysis

Genome Results

Genes for dissimilatory sulfite reducta were not retrieved.

Molybdopterin protein could potentially function as thiosulfate reductase.

Compiled Results

	H. congolense	H. vreelandii	H. kushneri	H. salsu
osulfate-reduction	Yes	Yes	Yes?	No
nodanese Activity	Yes	Yes	Yes	Yes
de: Thiosulfate Ratio	2 to 1	2 to 1	1 to 1	NA
Predicted Genes	Rhodanese, sulfite reductase	Rhodanese, thiosulfate reductase, sulfite reductase	Rhodanese, thiosulfate reductase	NT

vestigating Enzymatic Pathways

- Genome Analysis Initial thiosulfate cleavage remains unclear.
 - Can a rhodanese cleave thiosulfate into sulfite and sulfide?
- Suggests that an 'anaerobic sulfite reductase' is involved in the metabolism of sulfite.

(traditionally CN in rhodanese)

naerobic sulfite reductase'

- Also observed in *Thermoanaerobacter, Clostridia* and Salmonella species
- May be involved in reducing sulfite to prevent growth inhibition.
- Is not amplifiable using gene targets for dissimilatory sulfite reductase from SRB.

ethinking TRB Gene Targets

- odanese-like proteins are not practical ne targets for sulfidogenic *lanaerobium* species.
- aerobic sulfite reductase is prime target Directly responsible for the production of sulfide.
- Inhibition of this enzyme be an effective means of control for sulfidogenic *Halanaerobium* species.

ke Home Messages

- Sulfidogenesis from various sulfur anions and alternative enzymatic pathways must be considered.
- Anaerobic sulfite
- reductase may be a more appropriate gene target for sulfidogenic
- Halanaerobium species.

cknowledgements

hesis Committee:

- r. Kathleen Duncan
- r. Ralph Tanner
- r. Joseph Suflita
- r. Michael McInerney

Thank you for your time. I welcome your questions!