Field Characterization of a Brine Spill Site for Long-Term Reclamation Success

Robin Bay Kenneth Carlson Dustin Anderson Dave Edwards

Case Study – Brine Spill

~1,500 barrels produced fluid

~33 acres

Burke County, ND

Case Study – Brine Spill

- evation: ~2,300 Ft.
- recipitation: 17" annually
- oils: Loam/Clay Loam
- egetation:
- Improved pasture
- Wetlands
- ydrology: Adjacent to etlands and intermittent ream

Mitigation Process

- . Initial Response
- . Electromagnetic Survey
- S. Surface and ground water monitoring
- . Soil investigation and assessment
- 6. Wetland delineation to support potential 404 permitting
- 5. Design and installation of subsurface tile drainage system
- '. In-situ soil mitigation
- 8. Revegetation of affected areas
- . Vegetation inventory and monitoring of the disturbed area

Field Assessment – Electromagnetic Survey

EMP-400 3000, 9000, & 15000 kHz

Geophysical Survey Systems, Inc. www.geophysical.com • sales@geophysical.com

Field Assessment – Electromagnetic Survey

Surface & Groundwater Monitoring (TetraTeck

Field Measurements

- Electrical Conductivity
- Chloride

Lab Analyses

- pH
- Electrical Conductivity
- Total Dissolved Solids
- Total Suspended Solids
- Total Alkalinity
- Hardness, Ca/Mg

- Sodium Adsorption Ratio
- Anions
 - Alkalinity
 - Br, Cl, S
- Cations
 - Ca, Mg, K, Na

- Total & Dissolved Metals
 - Ar, Ba, B, Cd, Cr, Pb, Hg,
- Organics
 - Benzene
 - Gasoline & Diesel Range
 Organics

Surface Water Monitoring – Field + Lab

	Thresholds		Sample Range	
urface Water - Field	NDDoH	Irrigation	Max	Min
ectrical Conductivity (dS/m)	1.5	3.0	80.4	1.1
nloride (mg/L)	250	350	12,000	12.0

	Three	sholds	Sample Range	
urface Water - Lab	NDDoH	Irrigation	Мах	Min
ectrical Conductivity (dS/m)	1.5	3.0	63.3	1.4
nloride (mg/L)	250	350	33,900	11.4

Groundwater Monitoring – Field + Lab

	Thresholds		Sample Range	
roundwater –Field	NDDoH	Drinking Water	Max	Mir
ectrical Conductivity (dS/m)	1.5		47.7	0.75
nloride (mg/L)		250	12,668	4.0
	Thresholds		Sample Range	
roundwater – Lab	NDDoH	Drinking Water	Max	Mir
ectrical Conductivity (dS/m)	1.5		44.6	0.74
nloride (mg/L)		250	15,200	2.43

Field Assessment – Soil Sampling

Soil Investigation & Assessment – Sampling

- cavated soil pit or hand auger
- mpled in 1-ft
- crements to 4-ft
- eld descriptions
- eld chemistry
- 1:5 dilute water extract
- EC
- Chloride

Soil Investigation & Assessment – Analysis

- рΗ
- **Electrical Conductivity**
- **Organic Matter**
- Carbonate (CaCO₃)
- Calcium
- Magnesium
- Sodium
- Sodium Adsorption Ratio (SAR)
- Cation Exchange Capacity (CEC)

- Chloride
- Texture (% S, Si, C)
- Coarse Fragments
- Total Metals
 - Ba, Cd, Cr, Pb, Se, Ag, Hg
- Benzene
- Gasoline & Diesel Range Organics

Soil Investigation & Assessment – Field Result

	Thresholds		Sample Range	
onstituent	NDDoH	Reclamation	Max	Min
ectrical Conductivity (dS/m)	2	12	190.1	0.87
nloride (mg/kg)	250	250	40,370	1.8

Soil Investigation & Assessment – Lab Results

	Thresholds		Sample Range	
onstituent	NDDoH	Reclamation	Max	Min
4		8.5	8.2	5.9
ectrical Conductivity (dS/m)	2	12	73.2	0.61
odium Adsorption Ratio	12	12	139	0.79
nloride (mg/kg)	250	250	114,000	25
asoline Range Organics (mg/kg)	100		20	nd
esel Range Organics (mg/kg)	100		nd	nd

Soil Investigation & Assessment – Results

cal Conductivity

- 2 dS/m (NDDoH Threshold)
- 2-8 dS/m (Standard Revegetation Threshold)
- B-16 dS/m (Saline Tolerant Revegetation)
- 16 dS/m

n-Situ Mitigation – Tile Drain System

• 14 day dry time

n-Situ Mitigation – Soil Amendments

<mark>il Amendments</mark>

- alcium Nitrate
- 1 bbl LCA-II[™] / 25 bblwater
- 24" depth
- ypsum
- 400 mesh particle
- 5 70 ton/acre

vegetation

- roadcast seed
- 100 PLS/SqFt
- Native upland & wetland graminoids

mproving the Process

- Learning from the data
 - Saving time and money
 - Improving results
- Questions asked:
 - 1. How well does EM survey fit the soil lab data?
 - 2. Can EM survey and/or field soil data be used to improve reclamation designs?
 - 3. Could field water data be used to reduce the number of samples sent to the lab?

EM Survey vs. Soil Lab Data?

$R^2 = 0.66$ y = 0.0236x + 3.5

EM Survey vs. Soil Lab Data?

Field Data vs. Lab Data - Soil?

 $R^2 = 0.5$

Field Data vs. Lab Data - Soil?

 $R^2 = 0.9$

eld Data vs. Lab Data – Differences in Soil EC?

Dilution

- Field EC 1:5 water:soil mixture
- Laboratory EC Saturated Paste Extract from oven dried soil
- **Other Soil Characteristics**
 - Moisture, texture, clay content, and chloride
- **Instrument Calibration**
- Use a regression analysis to determine a correction factor based on your data or use literature
 - Oklahoma State University (2005) 1.85 correction factor
 - USDA (1954) 3.0 correction factor

Field Data vs. Lab Data – Groundwater?

 $R^2 = 0.9$ $R^2 = 0.9$

Field Data vs. Lab Data – Summary

	Electrical Conductivity			Chloride		
	(dS/m)			(mg/kg or mg/L)		
		Surface	Ground		Surface	Groun
atistical Analysis	Soil	Water	Water	Soil	Water	Wate
eld Mean	32.57	1.9	1.458	5095	897.1	12
ıb Mean	17.74	1.4	0.962	12625	1572.7	42.54
ample Size (N)	77	65	41	71	52	27
earson Correlation R-Value	0.752	0.953	0.979	0.93	0.963	0.984
egression R2 Value	0.566	0.909	0.959	0.862	0.928	0.968
atistical Analysis eld Mean b Mean ample Size (N) earson Correlation R-Value egression R2 Value	Soil 32.57 17.74 77 0.752 0.566	Water 1.9 1.4 65 0.953 0.909	Water 1.458 0.962 41 0.979 0.959	Soil 5095 12625 71 0.93 0.862	Water 897.1 1572.7 52 0.963 0.928	Wa 1 42 0.9 0.9

essons Learned for Future Efforts

- EM survey data can reduce quantity of soil samples
- Regression models developed using EM survey data and field soil data have the potential to improve reclamation designs
- Regression models developed with water field data can reduce quantity of lab samples for both surface and ground water
- All of these methods used in concert can reduce lab costs and improve mitigation and reclamation designs

Thank You!

