LNAPL Transmissivity Data Mining Project

Excerpts: FINAL DRAFT Summary Report

J. Michael Hawthorne, PG Dr. Dennis Helsel Charles Stone, PG/PE H_2A Environmental, Ltd. Practical Stats H_2A Environmental, Ltd.

Sponsored by:

AMERICAN PETROLEUM INSTITUTE

Top 10 Findings

- 1. 90% of LNAPL transmissivity (T_n) values from 2002-2014 are below 5 ft²/day
- 2. LNAPL transmissivity decreased substantially from 2003 to 2013 (latest full year)
- 3. Approximately 70% of LNAPL transmissivity values for 2013 are within or below the ITRC proposed hydraulic recoverability range of 0.1 0.8 ft²/d
- 4. LNAPL transmissivity does not correlate to apparent NAPL thickness (ANT)
- 5. LNAPL transmissivity correlates negatively to increasing LNAPL density and viscosity
- 6. Unconfined LNAPL was reported in 41% of wells while 33% of wells reported confined, perched or complex hydrogeologic LNAPL conditions (26% were unknown)
- 7. The equilibrium apparent NAPL thickness (ANT) for unconfined LNAPL was substantially lower than the equilibrium ANT for confined or perched LNAPL
- 8. LNAPL transmissivity correlates positively with increasing soil grain size, controlled by the smallest grain size present
- 9. All test methods except for petrophysical calculation yielded similar ranges of LNAPL transmissivity values
- 10. LNAPL transmissivity values for Summer and multi-season measurements were lower than LNAPL transmissivity measurements during Fall, Winter or Spring

	n	=	987	
	min	=	0.00	ft²/day
	max	=	115	ft ² /day
	mean	=	2.16	ft ² /day
	median	=	0.18	ft ² /day
40%	values	<	0.1	ft²/day
70%	values	<	0.8	ft ² /day
90%	values	<	5	ft ² /day
95%	values	<	10	ft ² /day

eneray

= Practical Stats

Comparison of $Log_{10} T_n$ Sample Population: 2003 vs. 2013

	n	=	199		
	min	=	0.01	ft ² /day	
	max	=	115	ft ² /day	
	mean	=	2.29	ft ² /day	
	median	=	0.28	ft ² /day	
)%	values	<	0.1	ft ² /day	
3%	values	<	0.8	ft ² /day	
)%_	values	<	4.8	ft ² /day	
5%	values	<	9.3	ft^2/day	
				= Practical Sta	ts

. Statistics. Down to Earth

Sites with Long-Term Recovery Data: Log₁₀ T_n Over Time

Interquartile ranges decrease then stabilize within or below 0.1-0.8 ft²/d range

Decreasing $Log_{10} T_n$ with Increasing $Log_{10} LNAPL$ Viscosity

- Mean T_n values for LNAPL viscosities >10 cp are significantly lower than mean T_n values for viscosities <10cp at p < 0.05
- Median T_n for viscosity <10 cp within range 0.1-0.8 ft₂/day; median T_n for viscosities >10 cp are below range 0.1-0.8 ft₂/day

One-Way ANOVA: $Log_{10} T_n$ vs Lithology Class

Rock

-12

-09

-0.6

-0.3

0.0

- Median T_n values for lithology classes are within range 0.1-0.8 ft₂/day
- Median T_n values decrease in order from coarse - medium fine grain-size fractions
- Mean T_n values for fine, medium, and coarse grain-size fractions are significantly different from each other

= Practical Stats

AR FRICAN PETROLEUM

Log₁₀ T_n Values vs Log₁₀ Apparent NAPL Thickness

= Practical Stats

One-Way ANOVA: ANT Values vs Hydrogeologic Condition

- Median ANT values are higher in confined and perched conditions than in unconfined conditions
- Mean ANT values decrease from perched/confined conditions to unconfined conditions
- Mean ANT values for perched/ confined conditions are significantly different than mean ANT in unconfined condition

Top 10 Findings

- 1. 90% of LNAPL transmissivity (T_n) values from 2002-2014 are below 5 ft²/day
- 2. LNAPL transmissivity decreased substantially from 2003 to 2013 (latest full year)
- 3. Approximately 70% of LNAPL transmissivity values for 2013 are within or below the ITRC proposed hydraulic recoverability range of 0.1 0.8 ft²/d
- 4. LNAPL transmissivity does not correlate to apparent NAPL thickness (ANT)
- 5. LNAPL transmissivity correlates negatively to increasing LNAPL density and viscosity
- 6. Unconfined LNAPL was reported in 41% of wells while 33% of wells reported confined, perched or complex hydrogeologic LNAPL conditions (26% were unknown)
- 7. The equilibrium apparent NAPL thickness (ANT) for unconfined LNAPL was substantially lower than the equilibrium ANT for confined or perched LNAPL
- 8. LNAPL transmissivity correlates positively with increasing soil grain size, controlled by the smallest grain size present
- 9. All test methods except for petrophysical calculation yielded similar ranges of LNAPL transmissivity values
- 10. LNAPL transmissivity values for Summer and multi-season measurements were lower than LNAPL transmissivity measurements during Fall, Winter or Spring

