Management & Remediation of Sites in the Petroleum Industry:

A Framework for the Developing World

Kevin Van Hook AECOM Houston, Texas

AECOM

October 15, 2014

An IPIECA Good Practice Guide

Management and remediation of sites in the petroleum industry

An IPIECA Good Practice Guide

Operations Good Practice Series 2014

www.ipieca.org

- Lead Author – AECOM
- Key Collaborators

 IPIECA
 - BP
 - ENI
 - ExxonMobil
 - Shell
 - Other Committee
 Members

http://www.ipieca.org/publication/management-and-remediation-sitespetroleum-industry-ipieca-good-practice-guide

21st IPEC Conference

October 15, 2014

Page 2

IPIECA's Vision Drives Promotion of Good Practices

To support the oil and gas industry efforts to improve its operations and products to meet society's expectations for environmental and social performance.

IPIECA operates globally and seeks to achieve its Vision by:

- Developing, sharing and promoting sound practices and solutions
- Enhancing and communicating knowledge and understanding
- Engaging members and others in the industry
- Working in partnership with key stakeholders

Page 3

Content Focused to End-User in Developing World

Generic, adaptable, and globally applicable risk-based framework for identifying and implementing corrective action techniques

- Managing releases to soil and groundwater from petroleum refineries, terminals, gas stations and on-shore E&P facilities
- Summarizes commonly accepted principles and approaches – ASTM, US EPA, UK EA
- Targeted to environmental specialists working in countries where legislative procedures or guidance may be less developed or detailed

Regulatory Framework in Developing Countries

Figure 1. Global map identifying regulatory and technical findings.

Spadaro, Philip A., 2011, Remediation of Contaminated Sediment: A Worldwide Status Survey of Regulation and Technology, Terra et Aqua, No. 123, June 2011

Good Practices Structure – a Practical Approach

Figure 1: Good Practices Work Flow

CSM Is Foundation for Exposure Assessment

Figure 2: CSM for Subsurface Petroleum Release

Graphical CSM

Figure 4 Graphical CSM for petroleum release at above-ground storage tank farm

Investigation Data Input to CSM and Risk Evaluation

Risk-Based Management Framework

Addresses impact(s) in the soil and/or groundwater on human health and environment by evaluating the linkage between:

- Release of a chemical from a <u>source;</u>
- The transport or exposure <u>pathway</u>; and
- The exposure to and uptake of the chemical contaminants by the <u>receptor</u>.

A key difference from traditional regulatory approaches: Incomplete <u>source-pathway-receptor</u> linkage is used to show no risk exists, and that no active remediation is needed

Risk Assessment Following ASTM RBCA Process

The RBCA process uses a tiered approach involving increasingly sophisticated levels of data collection and analysis:

- RBCA Tier 1 Screening Level Risk Assessment
- RBCA Tier 2 Site Specific Risk Assessment and Target Levels
- RBCA Tier 3 Site Specific Risk Assessment and Risk Characterization
 - High Cost and Complex Sites

It is a good fit for developing countries:

- Simplifies an otherwise complicated process
- Allows risk assessments to be tailored to the complexity of the site and contaminants
- Globally-accepted risk assessment framework that can be used where no standards or guidelines exist
- Wealth of guidance and software to aid in implementation

Two Primary Remedial Approaches

Figure 12: Commonly used remedial technologies for petroleum hydrocarbon impacted sites

Sustainability

- Sustainability considerations incorporated into alternatives selection process
- Sustainable Remediation:

The practice of demonstrating, in terms of environmental, economic, and social indicators, that the benefit of undertaking remediation is greater than its impact and that the optimum remediation solution is selected through the use of a balanced decision-making process (CL:AIRE, 2010)

Environment	Society	Economy	
Air	Human health and safety	Direct economic costs and benefits	
Soil and ground conditions	Ethics and equality	Indirect economic costs and benefits	
Groundwater and surface	Neighbourhood and locality	Induced economic costs and benefits	
water	Communities and community	Employment and employment capital	
Ecology	involvement	Project lifespan and flexibility	
Natural resources & waste	Uncertainty and evidence		

Table 6 Example sustainable remediation indicator categories (after SuRF-UK; CL:AIRE, 2011).

Framework Based on Proven Approaches

- API American Petroleum Institute
- ASTM ASTM International (formerly American Society for Testing and Materials)
- CL:AIRE UK
- EA Environmental Agency (UK)
- EPA U.S. Environmental Protection Agency
- FRTR U.S. Federal Remediation Technologies Roundtable
- ITRC Interstate Technology and Regulatory Council
- NICOLE Network of Industrially COntaminated Land in Europe
- SuRF UK (Sustainable Remediation Forum)

Further reading and references

The following reports and publications provide additional references for understanding and managing impacts, and assessing corrective action techniques for releases to soll and groundwater from retail gas stations, petroleum refineries, terminals, and on-shore exploration and production facilities. These publications summarize commonly accepted global principles and approaches developed by APL ASTM, the United States EPA, EA-UK, and others. Each reference is followed by a brief description to inform the reader of the relevance, accuracy and quality of the sources cited.

API (1993). Guide for Assessing and Remediating Petroleum Hydrocarbons in Soils. API Publication 1629, October, 1993.

This publication provides general information regarding the site and release characteristics relevant to, and methods for assessing and remediating, soils contaminated with petroleum hydrocarbons released from underground storage tank (UST) or above-ground storage tank (AST) systems and operations.

API (1996). A Guide to the Assessment and Remediation of Petroleum Releases, 3rd ed. Washington, D.C.: API, Publication 1628.

This document identifies and describes soil and groundwater remediation technologies specific to petroleum. This edition includes new technologies and improvements for the assessment and remediation of petroleum releases.

API (1997). Environmental Guidance Document: Waste Management in Exploration and Production Operations. API E5, February 1997.

The document specifically addresses community concerns about raw materials, products, and operations in the petroleum industry that could be potential sources of groundwater and soil impacts.

Appendix A: Standard and guidance references

API - American Petroleum Institute

ASTM - ASTM International (formerly American Society for Testing and Materials)

EPA – US Environmental Protection Agency

ITRC - Interstate Technology and Regulatory Council

Standard / Guidance Name / Description

Soil Sampling			
ASTM D2487-11	Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)		
ASTM D2488 - 09a	Standard Practice for Description and Identification of Soils (Visual Manual Procedure)		
ASTM D5633 - 04(2008)	Standard Practice for Sampling with a Scoop		
ASTM D5831 - 09	Standard Test Method for Screening Fuels in Soils		
ASTM D6907 - 05(2010)	Standard Practice for Sampling Soils and Contaminated Media with Hand-Operated Bucket Augers		
ASTM D1586 - 11	Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils		
ASTM D4700 - 91(2006)	Standard Guide for Soil Sampling from the Vadose Zone		
ASTM D6418 - 09	Standard Practice for Using the Disposable En Core Samplet for Sampling and Storing Soil for Volatile Organic Analysis		
ASTM D6640 - 01(2010)	Standard Practice for Collection and Handling of Soils Obtained in Core Barrel Samplers for Environmental Investigations		
Drilling Methods			
ASTM D6429-99(2011)e1	Standard Guide for Selection Geophysical Methods		
ASTM D6169 - 98(2005)	Standard Guide for Selection of Soil and Rock Sampling Devices Used With Drill Rigs for Environmental Investigations		

Appendix B:	Site Investigation	44
Site Investigation Methodology		44
١	Nork Plan	44
H	Health and Safety Plan	45
L L	Jtility Locating	45
ç	Soil and Bedrock Investigation Methods	46
(Groundwater Investigation Methods	47
ę	Soil and Groundwater Sample Laboratory Analyses	49
1	NAPL Delineation and Evaluation	50
9	Soil Vapor and Indoor Air Evaluations	51
[Decontamination	52
1	Management of Investigation-Derived Waste (IDW)	53
Comprehensive Site Assessment Documentation		53

Appendix C:	Remediation Technologies	55
Remediation	Technologies	
Physic	al Impermeable Barriers and Encapsulation (S-B-N-SL-G-V-L)	
Hydra	ulic Containment (N-G-L)	56
Skimm	ning (N)	57
NAPL	Recovery with Water Table Depression (N-G)	
Multi-F	Phase Extraction (S-N-G-V)	59
Enhan	ced Fluid Recovery (N)	60
MNA a	and Enhanced Bioremediation (S-G-V)	61
Soil Va	apor Extraction (SVE) (S-B-G-V)	61
Air Spa	arging (S-B-N-G)	62
Phytor	emediation (S-G SW-L)	63

Soil (S), Bedrock (B), NAPL (N), Sludge (SL), Groundwater (G), Surface Water (SW), Soil Vapor (V), Leachate (L)

Figure C-2 Pneumatic skimmer in a single well (EPA, 2011b) (API, 1996)

Figure C-8 Conceptual phytoremediation processes (AECOM Technical Services, Inc.)

Key AECOM Contact Information

- M Venkatesh
 - <u>M.Venkatesh@aecom.com</u>
- Chris Carleo
 - <u>Chris.Carleo@aecom.com</u>
- Kelly Hansel
 - Kelly.Hansel@aecom.com

Thank You

kevin.vanhook@aecom.com

