

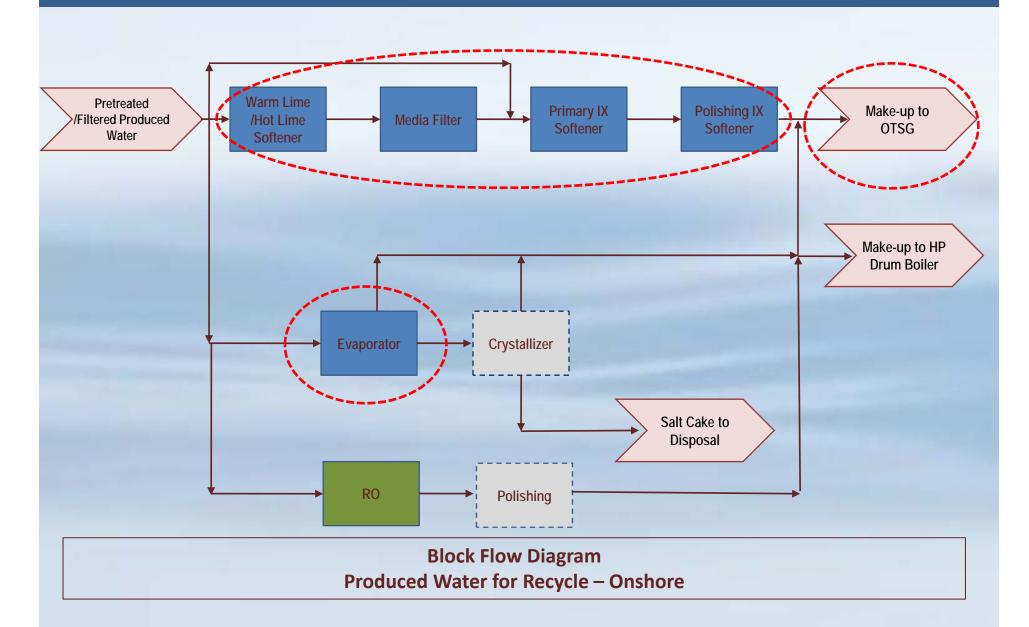
Produced Water Recycle Reuse at the Oman Mukhaizna Oil Field

October 14-16, 2014
Houston, Texas
Marriott Westchase Hotel

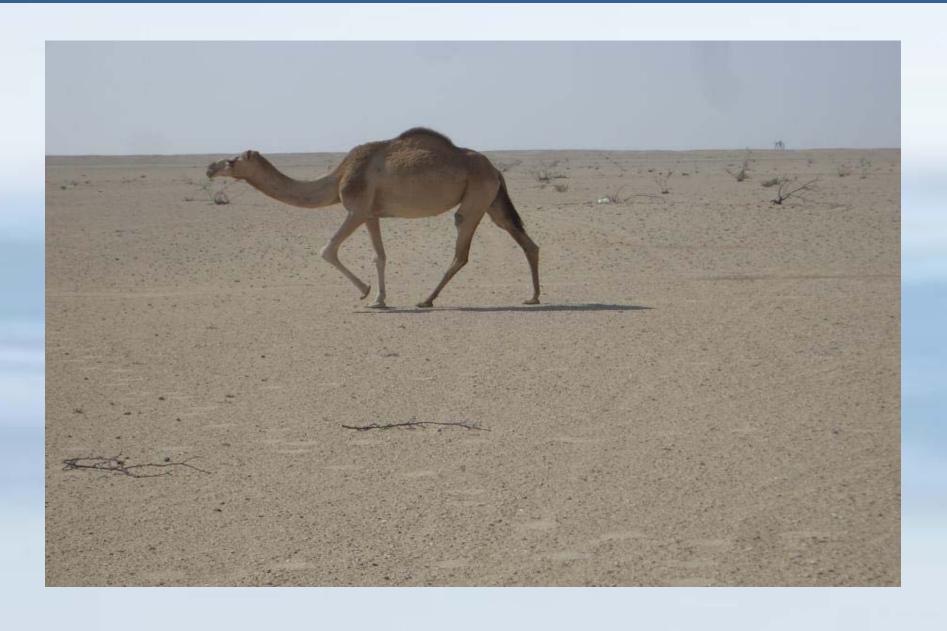
Alan R. Daza, M.Eng. P.Eng.
VP – Upstream O&G

dazaa@aquatech.com

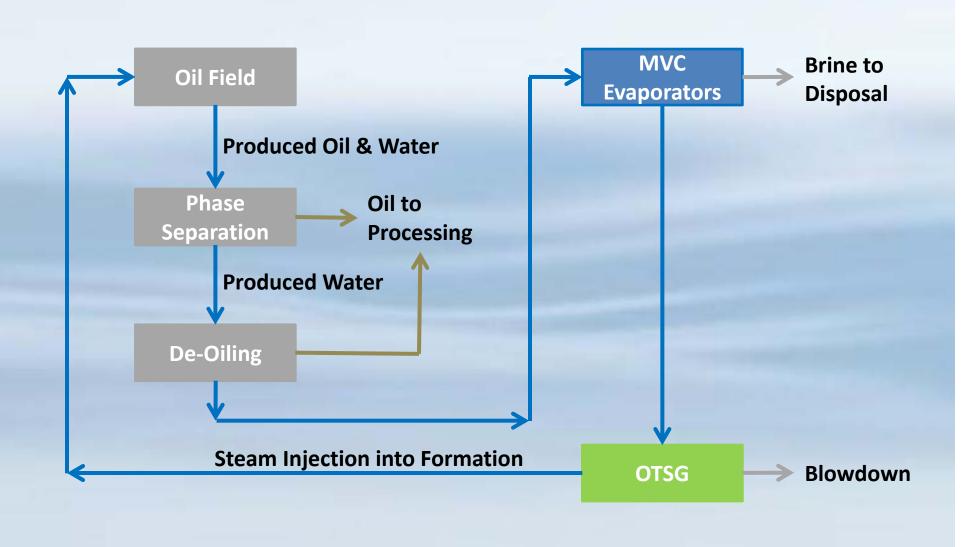
+1.412.378.2532



- Mukhaizna Oil Field discovered in 1975 by Petroleum Development of Oman (PDO);
- Located in central Oman, approx 660 km from Muscat;
- In 2005, a Royal Decree was issued by the government approving the development of the Mukhaizna oil field
- Occidental Petroleum is the largest shareholder and also operates the facility;
- In 2011 facility produced 124,000 bpd; designed to produce 150,000 bpd;
- Uses steam flooding EOR technique;
- Estimated reserves of 2 Billion barrels of heavy crude
- Aquatech supplied Phase 1: Evaporators (300K bwpd) and Phase 2 (L1/L2/L3): Conventional (390K bwpd)



Produced Water for Recycle - PFD



Aquatech What Did We Start With?

Aquatech Process Scheme – Phase 1

Aquatech Project Overview – Phase 1

PROJECT: Mukhaizna Phase 1

CUSTOMER: Occidental Mukhaizna LLC

(A subsidiary of Occidental Petroleum Corporation)

SITE/ FACILITY: Mukhaizna Field – 660 km from Muscat, Sultanate of Oman

Aquatech provided following services and scope:

Design

Engineering

- Project Management
- Procurement
- Turnkey Installation (Civil, Mechanical & Electrical)
- Inspection & Testing
- Supply FOB site
- Supervision during installation and commissioning, and
- Supervision of Site acceptance test / performance test:

CAPACITY:

- · 7 trains of Dual Effect Evaporators
- Each train consists of 2 evaporators and produces 284 m³/h (1250 gpm) of distillate
- Total system distillate production of 1988 m³/h (8750 gpm) or 300,000 bwpd.
- Evaporators can be operated in either a seeded or unseeded mode.

Aquatech Design Considerations – Phase 1

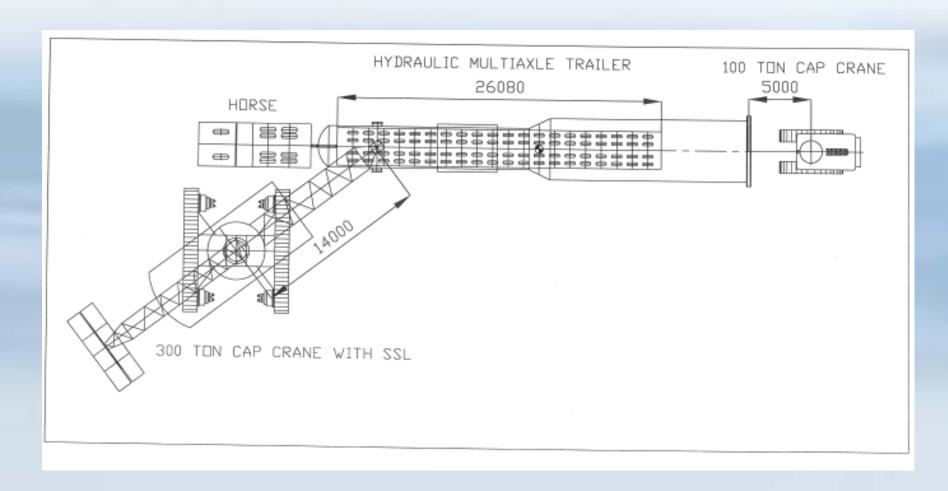
Starte	with	tho	food	water
Starts	with	ıne	reeu	water

- Multiple water sources and cases for design;
- ☐ Produced & High Brackish aquifer waters
- ☐ Varying blend %s from each
- **☐** Maximize recovery rate
- **Evaporator technology was** selected.
- ☐ Ability to handle a vary wide range of feedwater chemistries and provide high recovery rates

Values in mg/l unless otherwise noted	DESIGN	
pH (Units)	7.5 - 8.2	
Са	300 - 609	
Mg	60 - 296	
Total Hardness (as CaCO3)	995 - 2742	
Na	7936 - 8555	
K	224	
Li	0.2	
Ва	0.3	
Fe	0.02	
Sr	6	
HCO3	145 - 470	
CI	13,353 - 13,700	
SO4	10 - 909	
SiO2	23 - 250	
В	3	
Oil	<20	
TDS	22,340 - 23,650	
Dissolved H2S	<10	
Water Temp (F)	85 - 185	

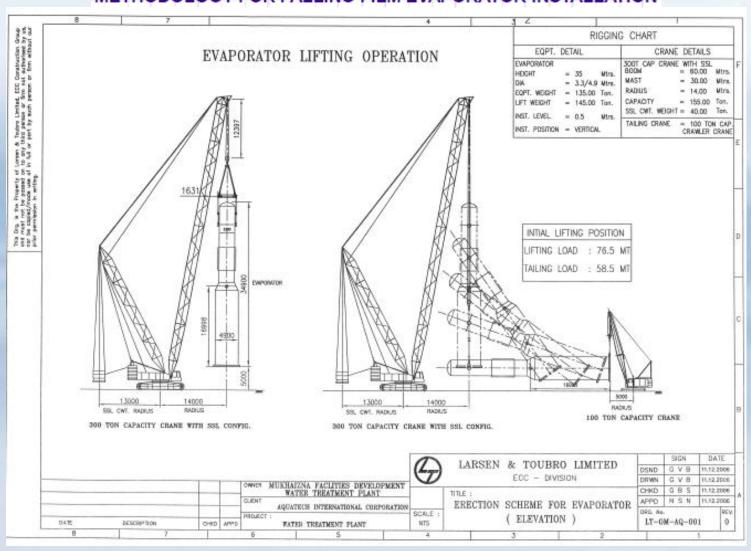
Aquatech Project Execution – Phase 1

- ✓ ROUTE MAP
 - ✓ Detailed survey
- ✓ VEHICLE TRANSPORTATION
 - ✓ Distance Covered: 850 Km
 - ✓ Avg Speed: 30-45 Km/hr
 - √ Time (Approx): 5 6 days (Mussafeh (UAE) to jobsite
 - **✓** Police Escorts/Permits
 - √ # of stoppages on route
 - ✓ Fueling Requirements
 - √ Vehicle Ingres/Egress



Project Execution – Phase 1 (cont'd)

HEAVY CRANE CONCEPT


FALLING FILM EVAPORATOR UNLOADING AT SITE

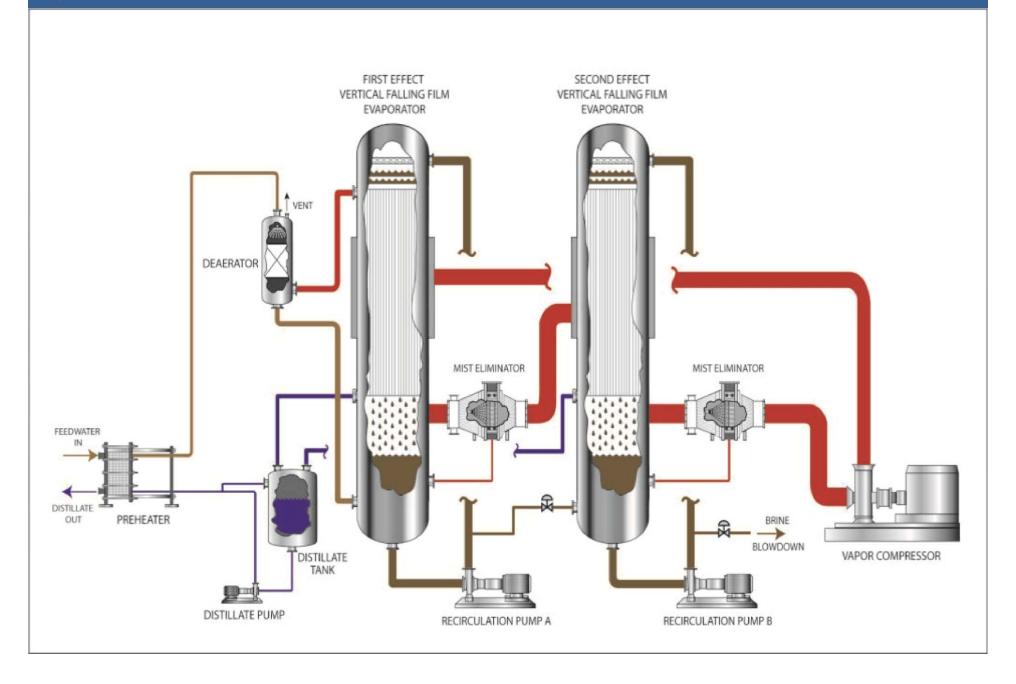
HEAVY CRANE CONCEPT

METHODOLOGY FOR FALLING FILM EVAPORATOR INSTALLATION

ERECTION & INSTALLATION

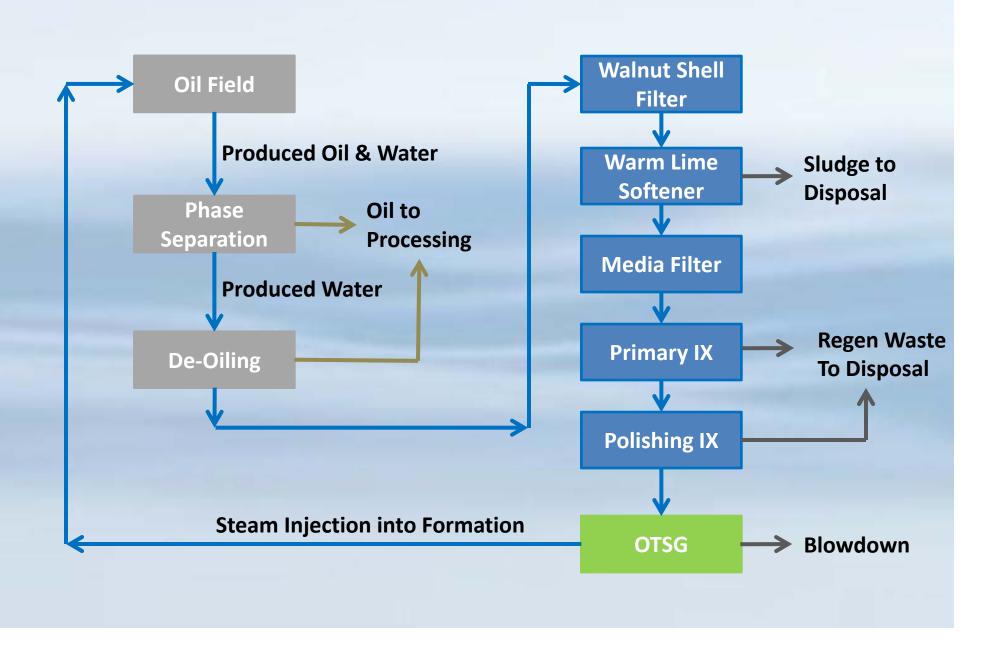
ERECTION & INSTALLATION

ERECTION & INSTALLATION


Aquatech Design Highlights – Phase 1

- √ 7 trains x 42,860 bwpd distillate capacity each for total of 300,000 bwpd
 (8750 gpm) of distillate
- ✓ Each train is arranged as 2 effect vertical tube falling film evaporators driven by a single compressor
- ✓ High efficiency external mist eliminators
- ✓ Dual plate brine distribution
- ✓ Operation in Seeded slurry (CaSO₄) and Unseeded scale control modes
- ✓ CaCl₂/Na₂SO₄ to balance chemistry for seeded operation; pH adj, antiscalant & anti-foam
- ✓ Power consumption over 10% less than a single train configuration
- ✓ 1st effect has a low scaling rate and essentially the number of tubes requiring cleaning is reduced by 50%
- ✓ System produces:
 - √ < 5 mg/l TDS;
 </p>
 - √ < 0.5 mg/l TH
 </p>
 - \checkmark < 0.05 mg/l SiO₂

Two Effect Single Train



Aquatech Project Highlights - Phase 1

- ✓ Overall Schedule: 36 months (approx) from PO to overall facility commissioned & performance tested
- ✓ At 18 months from PO, first evap tower was delivered....On average it took 6-8 wks for the installation of a train with some activities overlapping each other from train to train.
- √ 6-8 weeks per train for start-up/commissioning activities with some activities overlapping each other and the total time it took between the 1st and 7th train being commissioned/start-up was approximately 9-10 months calendar wise.
- √ First train was placed into commercial operation in August 2008
- ✓ All trains passed performance testing for power consumption, production capacity and distillate quality
- ✓ During peak construction, over 2000 workers with various skills at the jobsite
- ✓ Multiple safety awards earned

Aquatech Process Scheme – Phase 2

Project Overview – Phase 2

PROJECT: Mukhaizna Phase 2

CUSTOMER: Occidental Mukhaizna LLC

(A subsidiary of Occidental Petroleum Corporation)

SITE/ FACILITY: Mukhaizna Field - 660 km from Muscat, Sultanate of Oman

Aquatech provided following services and scope:

Design

Engineering

Project Management

Procurement

Inspection & Testing

Supply FOB site

Supervision during installation and commissioning, and

Supervision of Site acceptance test / performance test:

CAPACITY:

Lot 1: 130,000 bwpd (861 m³/h; 3789 gpm) Lot 2: 140,000 bwpd (927 m³/h; 4080 gpm) Lot 3: 120,000 bwpd (795 m³/h; 3497 gpm)

Total: 390,000 bwpd (2583 m³/h; 11,366 gpm)

Each lot of water treatment facilities in Phase 2 comprised of the following general process steps

- Walnut Shell Filters
- Warm Lime Softening Clarification
- After Filters
- Ion Exchange Softening Primary & Polishing
- Chemical storage & handling

Aquatech Design Considerations – Phase 2

- ☐ Produced water existed as the main feedwater source;
- ☐ Significantly lower TDS design water
- **☐** Faster system delivery schedule was required
- ☐ Conventional process was selected
- ☐ Client selected IX SAC polishing (in lieu of recommended WAC) considering "expectation" of further lowered TDS to 4500 mg/l

Values in mg/l unless otherwise noted	DESIGN	
pH (Units)	6.5 - 8.5	
Ca	140	
Mg	30	
Total Hardness (as CaCO3)	322 - 483	
Na	2402	
Ва	1	
Fe	0.1	
Sr	12 - 20	
HCO3	348	
Cl	3829	
SO4	248 - 372	
SiO2	233	
Oil	<20	
TDS	6500	
Dissolved H2S	4 - 10	
Water Temp (F)	95 - 203	

Aquatech Project Execution – Phase 2

Aquatech Design Highlights – Phase 2

- √ 3 Lots of varying capacity providing a total of 390,000 bwpd (11,366 gpm)
 of product water
- √ 4 x 33% Walnut shell filters;
- √ 1 x 100% Warm Lime Softening Clarifier
- √ 4 x 33% Afterfilters
- √ 4 x 33% Primary SAC (co-current); 4 x 33% Polishing SACs (split flow counter-current)
- ✓ Recommended polishing WAC
- ✓ System produces:
 - < 50 mg/l SiO₂
 - √ < 1 mg/l TH at elevated TDS level of 6500 mg/l and
 </p>
 - √ < 2 mg/l TH at elevated TDS level of 8500 mg/l
 </p>

Aquatech Lessons Learned

- Consider produced water and make-up water chemistry as separate stand-alone in addition to % blends;
- ❖ Ensure client follows O&M procedures....issues with trains being operated longer than recommended which resulted in tube pluggage, very difficult scale to remove;
- ❖ N+1 system design. Original Phase 1 design was "N+1" but being operated as "N";
- Increase modularization;
- **❖** Secure O&M maintenance contract......Ensures proper operation, ability to train local staff and results in a happier customer;
- Local suppliers/fabricators were an important part of the project success;
- **Secure shop capacity for major fabricated components early;**
- Increase focus on transport and logistics planning and cross border movement of major shipments;
- **❖** Understanding the business culture. Hiring Oman locals was key.

Summary & Conclusions

