Horizontal Wells Target the Source

Horizontal Environmental Well

Drilling Fluids – Is Bentonite a Four
Letter Word?

Horizontal Well Drilling Fluids

- Consolidated formations
 - Air or water based drilling fluid
- Unconsolidated formations
 - Water based drilling fluids
 - Clay based bentonite
 - Organic polymer based guar/xanthan

Functions of Drilling Mud

- Maintain borehole stability
- Clean the drill bit
- Remove cuttings from the borehole
- Cool and lubricate the drill bit
- Cool the locating tools
- Minimize fluid loss to the formation

Two Most Common Drilling Fluids

- Bentonite based
 - Naturally occurring volcanic clay mineral
 - Cost effective
 - Used in most water well construction
 - Requires specific well development activities

- Bio-polymers
 - Based on long chained starches (guar, xanthan)
 - More expensive than clay
 - Will bio degrade over time
 dispersal accelerated
 with enzyme breaker
 - Requires specific well development activities

Bentonite vs. Bio-Polymer

- The question asked by consultants and regulators – Which is best?
- The answer...

IT DEPENDS

Which Mud to Choose?

- Type of well
 - Fluid extraction/injection
 - Soil vapor extraction (SVE)
 - Sparge/Bio-sparge
- Location of well
 - Below water table
 - Vadose zone

Which Mud to Choose?

- Well construction
 - Screen open area %
 - Filter sock/pre-pack screen
 - Diameter
- Development methodology
 - Physical
 - Chemical

Which Mud to Choose?

- Interplay of
 - Well type
 - Well screen
 - Well location
 - Well development

Well Development

- ANY DRILLING METHOD/DRILLING FLUID DAMAGES THE FORMATION
- Purpose of well development
 - Remove drilling fluid from the borehole and near borehole formation
 - Increase hydraulic conductivity in the near borehole formation

Well Development

- Physical
 - Swab
 - Bail
 - Over-pump
 - Jet
- Chemical
 - Low pH/surfactant for bentonite
 - Enzyme/calcium hypochlorite

Physical Swabbing

- Screens below the water table with high open area and adequate yield
 - Aggressive physical and chemical development methods can be used
 - "Swabbing" and fresh water/chemical jetting, over-pumping
 - Break down and remove both bentonite and polymer fluids

High Open Area?

4" Sch. 80 PVC screen – 0.020" slot,
 standard pattern – 4.1% open area

- Screens above the water table
 - Aggressive physical and chemical treatment
 - Over-pumping ineffective
 - Solid bentonite may be left in the formation
 - Biopolymer best solution

- Wells below the water table with low open area
 - Sparge or biosparge may have open area less than 1%
 - Impossible to get physical energy outside of screen to bore hole well/near borehole formation
 - Biopolymer best solution

- Filter sock based screens
 - Fabric make physical development difficult
 - Fabric may trap solids

Biopolymer recommended

The Bottom Line

- Both clay based and biopolymer drilling fluids can be utilized in the correct situation
- In low open area screens and screens installed in the vadose zone biopolymers are recommended

- David Bardsley, P.G.
- Directed Technologies Drilling
- www.horizontaldrill.com
- david@horizontaldrill.com
- 800.239.5950