Horizontal Wells
Target the Source

Horizontal Environmental Well
Drilling Fluids – Is Bentonite a Four Letter Word?
Horizontal Well Drilling Fluids

- **Consolidated formations**
 - Air or water based drilling fluid

- **Unconsolidated formations**
 - Water based drilling fluids
 - Clay based – bentonite
 - Organic polymer based – guar/xanthan
Functions of Drilling Mud

- Maintain borehole stability
- Clean the drill bit
- Remove cuttings from the borehole
- Cool and lubricate the drill bit
- Cool the locating tools
- Minimize fluid loss to the formation
Two Most Common Drilling Fluids

- **Bentonite based**
 - Naturally occurring volcanic clay mineral
 - Cost effective
 - Used in most water well construction
 - Requires specific well development activities

- **Bio-polymers**
 - Based on long chained starches (guar, xanthan)
 - More expensive than clay
 - Will bio degrade over time
 - dispersal accelerated with enzyme breaker
 - Requires specific well development activities
Bentonite vs. Bio-Polymer

• The question asked by consultants and regulators – Which is best?
• The answer...

IT DEPENDS
Which Mud to Choose?

• **Type of well**
 – Fluid extraction/injection
 – Soil vapor extraction (SVE)
 – Sparge/Bio-sparge

• **Location of well**
 – Below water table
 – Vadose zone
Which Mud to Choose?

• Well construction
 – Screen open area %
 – Filter sock/pre-pack screen
 – Diameter

• Development methodology
 – Physical
 – Chemical
Which Mud to Choose?

- Interplay of
 - Well type
 - Well screen
 - Well location
 - Well development
Well Development

• ANY DRILLING METHOD/DRILLING FLUID DAMAGES THE FORMATION

• Purpose of well development
 – Remove drilling fluid from the borehole and near borehole formation
 – Increase hydraulic conductivity in the near borehole formation
Well Development

• Physical
 – Swab
 – Bail
 – Over-pump
 – Jet

• Chemical
 – Low pH/surfactant for bentonite
 – Enzyme/calcium hypochlorite
Physical Swabbing

Free water surface

Well casing

Surge block. Surge block moves up and down to create in-out movement of water through screen.

Screen
Let’s Put the Pieces Together

• Screens below the water table with high open area and adequate yield
 – Aggressive physical and chemical development methods can be used
 • “Swabbing” and fresh water/chemical jetting, over-pumping
 – Break down and remove both bentonite and polymer fluids
High Open Area?

- 4” Sch. 80 PVC screen – 0.020” slot, standard pattern – 4.1% open area
Let’s Put the Pieces Together

• Screens above the water table
 – Aggressive physical and chemical treatment
 • Over-pumping ineffective
 – Solid bentonite may be left in the formation
 – Biopolymer best solution
Let’s Put the Pieces Together

• Wells below the water table with low open area
 – Sparge or biosparge may have open area less than 1%
 – Impossible to get physical energy outside of screen to bore hole well/near borehole formation
 – Biopolymer best solution
Let’s Put the Pieces Together

• Filter sock based screens
 – Fabric make physical development difficult
 – Fabric may trap solids

Biopolymer recommended
The Bottom Line

- Both clay based and biopolymer drilling fluids can be utilized in the correct situation.
- In low open area screens and screens installed in the vadose zone biopolymers are recommended.
David Bardsley, P.G.
Directed Technologies Drilling
www.horizontaldrill.com
david@horizontaldrill.com
800.239.5950