Session 1C Oil & Gas/Environmental Geology

Horizontal Environmental Drilling 101 – An Introduction to the Means and Methods for Horizontal Environmental Well Installation

History of Horizontal Environmental Wells

- Innovative use of existing technology
- Horizontal/directional oil wells in the 1930s present
- Directional "river crossings" in the 1970s
- Environmental applications for the Department of Energy in 1988
- Utilized for most remediation applications by 2014

Environmental Applications

- Sampling under obstructions
- Extraction techniques
 - Groundwater
 - Free phase product NAPL and DNAPL
 - Vapors
 - Dual phase
- Injection techniques
 - ISCO
 - Nutrient injection
 - Air sparge
 - Bio sparge
 - Barriers PRBs/HRx

Environmental Applications

- Thermal treatment
 - Hot air/steam injection
 - Electrical resistance heating
- Geotechnical
 - Dewatering
 - Slope stability
- Groundwater production

Applications/Advantages of Horizontal Wells

Access Areas Unreachable to Vertical Wells

- Airports
- Rail Yards
- Landfills
- Pits/Ponds/Lagoons
- Chemical Plants
- Manufacturing Facilities

Applications/Advantages of Horizontal Wells

Allows screen placement in areas of concern

- Most plumes are long and thin
- Well placement can mimic plume geometry
- Entire screen can be placed in free phase

Fewer wells are required for remediation

- Vertically fractured bedrock
- Greater ROI

Applications/Advantages of Horizontal Wells

Minimal Site Impact

- Reduce amount of wells/well head required
- Well heads can be placed away from existing surface infrastructure
- Less construction time on site

Directional Control/Steering

- The bit is navigated along a predetermined path
- The well need not be horizontal or straight
- Bore path is design is based on
 - Allowable bending radius of drill pipe and well materials
 - Geology
 - Treatment objective
 - Surface constraints

Directional Control/Steering

- The drill string is steered by pushing the drill pipe against an asymmetric bit with a hydraulic jet; "duck bill" or bent sub
- The force against the bit or sub forces the drill pipe in direction of the bit orientation
- When the entire assembly is rotated, the drill string goes straight
- A sensor behind the bit sends the direction/orientation of the bit to the surface

Locating Technologies

- Several Options Available
 - Induced magnetic field
 - Earth's magnetic field and gravitational force
 - Gyroscope
- Selection based on bore path, interference risk, depth and cost

Drilling Fluids are Required

- Maintain hole stability
- Remove cuttings
- Limit drilling fluid loss to the formation
- Cool bit and steering tools
- Clay (Bentonite)
- Bio-polymer

Well Materials (Screen & Casing)

- Similar materials to vertical well installations
 - PVC
 - Carbon steel
 - Stainless steel (304 and 316L)
 - HDPE
 - Fiberglass

Types of Horizontal Wells

- Continuous Completions
 - Two access points to the well (entry and exit)
 - Well depths over 200'
 - Well lengths over 2,850'
 - Screen and casing pulled into the borehole
 - Requires access to the exit point

Continuous Well Installation

Types of Horizontal Wells

- Blind Completion
 - Only one access point to the well
 - Ideal for offsite plumes
 - Well depths over 200'
 - Well lengths over 1,500'
 - Screen and casing pushed into open borehole
 - Screen and casing installed inside of drill pipe using patent pending "knock off" technology

Open Hole Blind Well Completion

Conference

Drilling Equipment

- Drill rig
- Fluid cleaning/recycling system
- Pipe trailer
- Support equipment
 - Water truck
 - Crew truck
 - Backhoe
 - Excavator

Small Rig Set Up Area

- 7,000 lb. capacity rig
- 30' x 50' area
- Continuous well requires area at exit point

Large Rig Set Up Area

- 200,000 lb. capacity rig
- 100' x 150' area

Installation Challenges

- Drilling fluid vent to the ground surface "Frack Out" or "Inadvertent Fluid Return"
 - Drilling fluid properties and depth below ground surface are contributing factors
 - High mud weight and pump pressure
 - Shallow portions of the bore or long shallow wells (less than 10' deep)
 - Mitigated by drilling techniques
 - Spills contained with sand bags and pumping systems
 - Impacted area normally "heals" in 24 hrs.

Installation Challenges

In Summary

- The technology is innovative not experimental
- Horizontal wells are a proven, cost effective installation method
- Thousands of wells have been successfully completed in the US
- Horizontal wells can be used with all remediation technologies

- David Bardsley, P.G.
- Directed Technologies Drilling
- www.horizontaldrill.com
- david@horizontaldrill.com
- 800.239.5950

