Global Chemical Registration Strategies for Oilfield Chemicals

Jessie Kneeland, Ph.D. Manu Sharma, M.S. Ari Lewis, M.S.

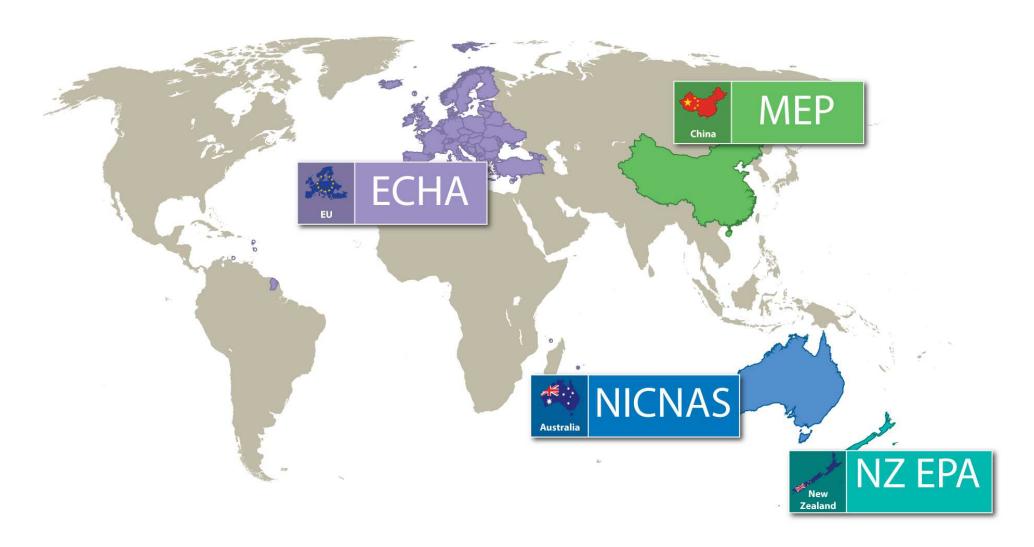
IPEC 2014

Getting the Product to the Customer

Component Name	Percent Composition		
Water	25		
Sodium chloride	25		
Chemical Y	50		

Registration

Jurisdiction A


Jurisdiction A

Do I have to register?

What are the data requirements to register?

Regulatory Agencies

Many types of oil and gas chemicals

- Drilling muds
- Cements
- Completion fluids
- Biocides
- Corrosion or scale inhibitors

Component Name	Percent Composition
Water	25
Sodium chloride	25
Chemical Y	50

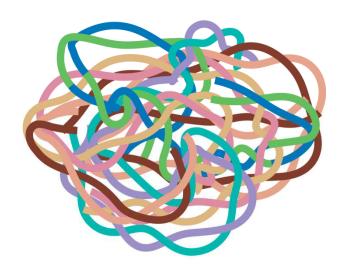
What is chemical registration?

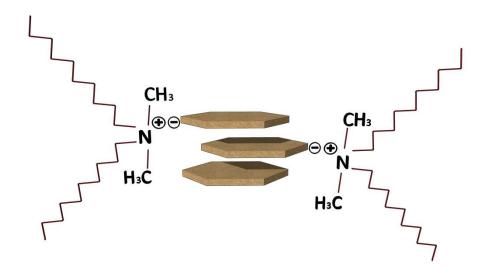
- In many countries, new chemicals must be registered with a government agency prior to manufacture or import
- How can we comply with registration requirements?
 - Register new chemicals
 - Evaluate existing product lines for compliance
 - Monitor changing regulations

Component Name	Percent Composition
Water	25
Sodium chloride	25
Chemical Y	50

Why register new chemicals?

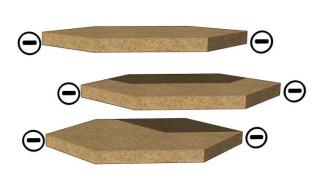
- Rapidly developing chemical technology
 many new chemicals
- New chemicals are profitable!
- Lack of compliance is a liability that can lead to:
 - business disruption
 - legal penalties (fines, jail time)
 - increased scrutiny of your company and the industry generally

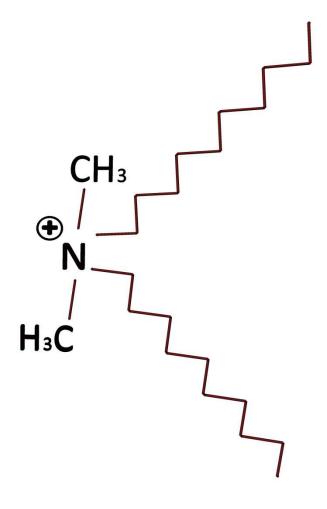


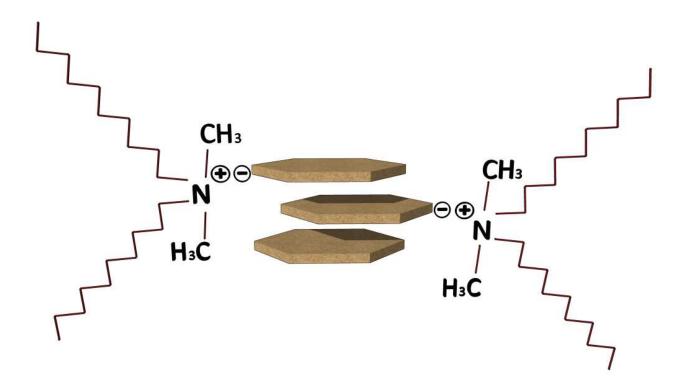


Two examples

Non-hazardous polymer


Organoclay




Organoclay = Clay + "Quat"

Organoclay = Clay + "Quat"

Getting the Product to the Customer

Component Name	Percent Composition		
Water	25		
Sodium chloride	25		
Chemical Y	50		

Registration

Jurisdiction A

Jurisdiction A

Do I have to register?

What are the data requirements to register?

Registration Questions

Jurisdiction A

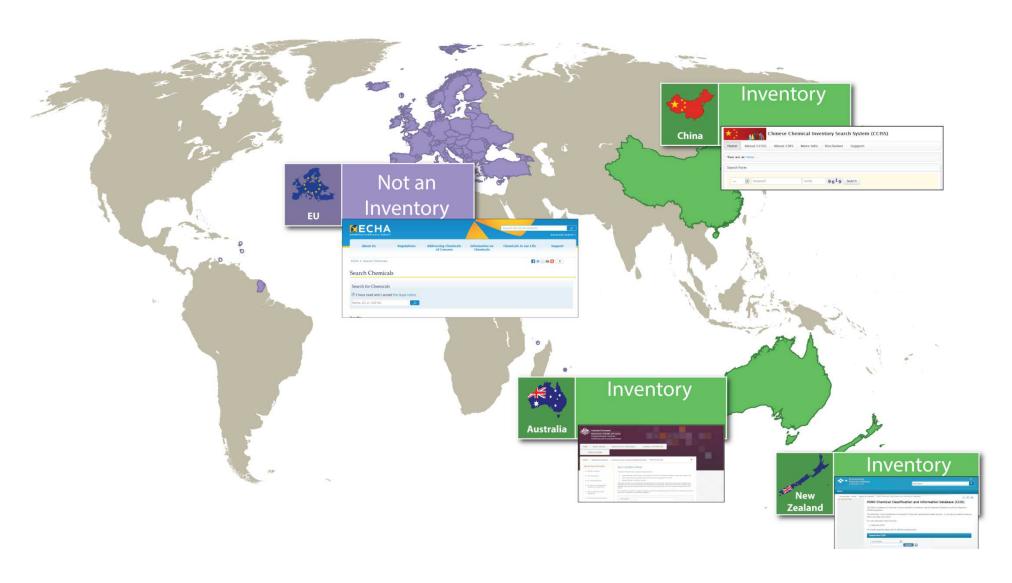
Jurisdiction B

Jurisdiction C

Jurisdiction

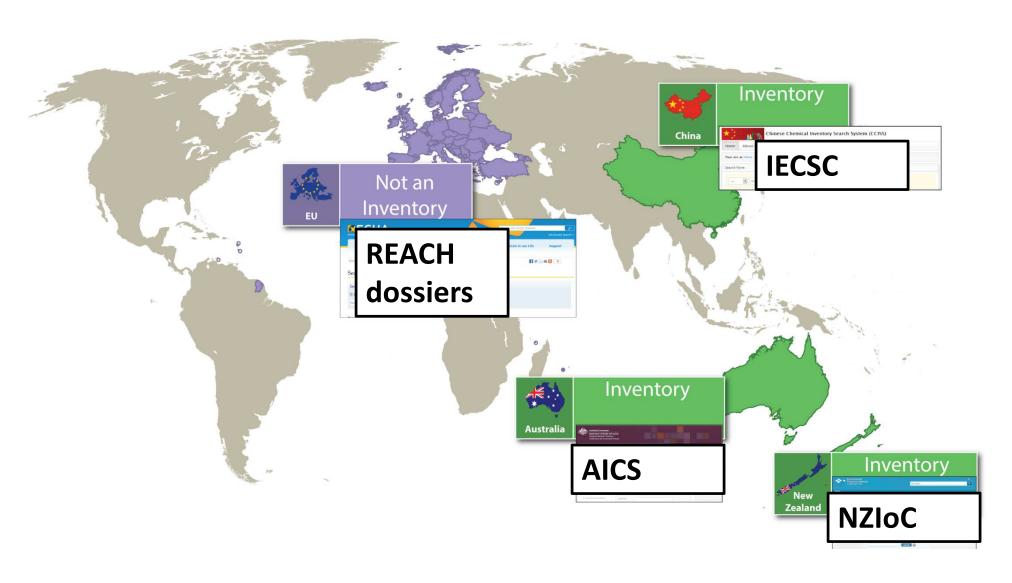
Do I have to register?

What are the data requirements to register?


Registration Questions

Do I have to register?

What are the data requirements to register?



"Do I have to register?" -- Inventory Status

"Do I have to register?" -- Inventory Status

"Do I have to register?" -- Exemptions

Full exemptions (vary by jurisdiction):

- Naturally-occurring substances
- Articles
- Impurities/reaction intermediates
- EU polymers register monomers!

Reduced requirements:

- Low volume (e.g., R&D)
- Polymers of Low Concern (PLC)

"Do I have to register?" -- Exemptions

Full exemptions (vary by jurisdiction):

- Naturally-occurring substances
- Articles
- Impurities/reaction intermediates
- EU polymers register monomers!

Reduced requirements:

- Low volume (e.g., R&D)
- Polymers of Low Concern (PLC)

DEFINITION OF A NATURALLY-OCCURRING CHEMICAL

A naturally-occurring chemical is defined in Section 5 of the Act as:

"(a) An unprocessed chemical occurring in a natural environment.

(b) a chemical occurring in a natural environment, being a substance that is extracted by

manual, mechanical, or gravitational means,

(ii) dissolution in water; of

(iii) flotation;

(iv) a process of heating for the sole purpose of removing uncombined water

without a chemical change in the substance

Guidance on these processes is included below

It is noted that the definition of a naturally-occurring chemical is consistent with equivalent definitions in other notification and assessment schemes.

Unprocessed chemicals occurring in a natural environment

The first part of the definition of a naturally occurring chemical (part (a)) applies to chemicals which can be obtained from, for example, plants, micro-organisms or animals without any processing at all, for example blood and milk from animals. The definition also applies to certain inorganic matter such as minerals, ores, crude oil, coal and natural gas which can be, for example, obtained from the earth or sea without any processing.

Chemicals extracted without a chemical change

The second part of the definition of a naturally-occurring chemical (part (b)) applies to chemicals which occur in nature but which have been processed by certain means without any change in the chemical composition of the chemical. A description of these processes, with examples, is set out below.

Extraction by manual, mechanical or gravitational means

The simplest method of separation is when a naturally-occurring chemical is removed from its matrix or another chemical by hand or machine without any change in the chemical composition. Processes which may be applicable include:

- Filtration, where the solid and liquid phases of a mixture are mechanically separated by passing the mixture through a porous medium
- Centrifugation, where the liquid phases or solid and liquid phases of a mixture are separated by mechanical/gravitational means
- Sedimentation, where the solid and liquid phases of a mixture are gravitationally separated by enabling the settling of solids in liquids
- Cold pressing, where the liquid of a liquid-solid mixture is separated by squeezing the matrix to obtain the liquid.
- > Sieving, where the solids in a mixture can be separated on the basis of particle size

Extraction by dissolution in water

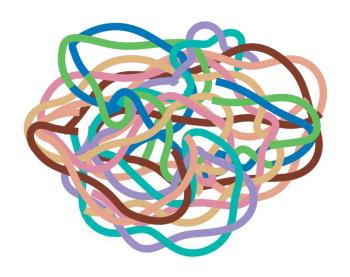
In this separation method (for water-soluble chemicals), the only solvent which can be used to extract the chemical from other components in a mixture is water. The dissolution by any other solvent or mixture of solvents or mixture of water with other solvents disqualifies the chemical from being naturally-occurring.

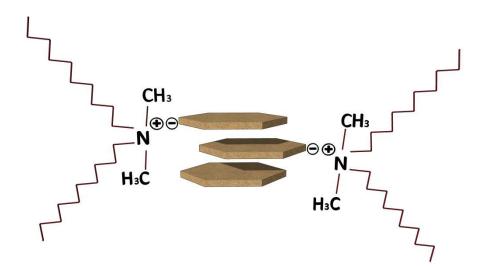
Examples of this process include the extraction of sugar from sugar beets using water, the leaching of soluble tea from tea leaves and the extraction of a water-soluble chemical from a mineral ore.

Extraction by flotation

Flotation is a physicochemical property-based separation process widely used in mineral processing to separate minerals from waste rock or solids. Flotation is based on the use of wettability differences of solid particles, where mineral ore is pulverised and mixed with water and certain special chemicals that cause preferential wetting of the solid particles. The unwetted particles are carried to the surface by air bubbles to obtain a minera concentrate, for example leads, zinc and copper concentrates.

Extraction by a process of heating for the sole purpose of removing uncombined water

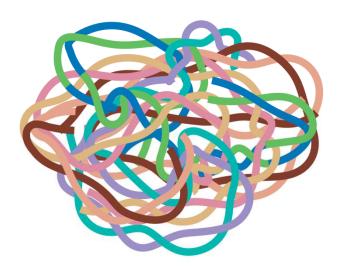

Heat can be used to purify or concentrate chemical compounds by removing uncombined water. For the purposes of meeting the NICNAS definition of a naturally-occurring chemical, the heat applied is not to serve any other purpose, for example the heat necessary for steam distillation. An example of this extraction process would be the drying of a wet clay or mineral, where moisture is not chemically-bound to the substrate.



"Do I have to register?" -- Examples

Non-hazardous polymer

Organoclay

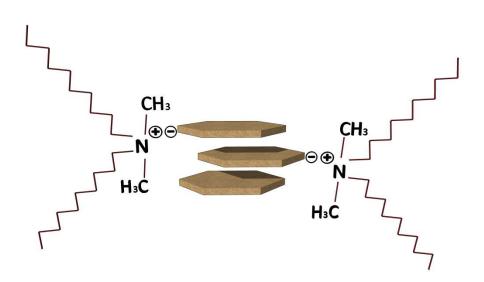


"Do I have to register?" -- Examples

Non-hazardous polymer

EU: Register monomers

Australia: Register as PLC


China: Register as PLC

NZ: Don't register

"Do I have to register?" -- Examples

Organoclay

EU: Register quat

Australia: Register organoclay

China: Register quat

NZ: Map to group standard, possibly notify or register

New product

- Multiple components
 - On inventory
 - Not on inventory
 - Not on inventory, but exempt (e.g., naturally occurring)

Component Name	Percent Composition		
Water	25		
Sodium chloride	25		
Chemical Y	50		

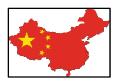
Who needs to register?

- Importer or manufacturer of new industrial chemicals (most countries)
 - Chemical on country inventory do not register
 - Naturally occurring substance do not register
 - Food, pesticides, biocides may be covered by different laws
- Importer or manufacturer of any industrial chemical (EU)

Registration Questions

Do I have to register?

What are the data requirements to register?



"What are the data requirements to register?" -- Notification Types

Volume (tons)		European Union	Australia	New Zealand	China
>1000		Regular (T4)		Notification not	Regular (T4)
100-1000		Regular (T3)	Ctondord	driven by import volume.	Regular (T3)
10-100		Regular (T2)	Standard	volume.	Regular (T2)
1-10		Regular (T1)			Regular (T1)
< 1			Limited		
0.1 – 1	Not Hazardous				
< 0.1		No Testing Required	Low Volume Permit		Simple - Basic
< 0.1	Not Hazardous		Non-Cosmetic Exemption		
No Limit	PLC	Register monomers	PLC		PLC
< 0.1	R&D Only	No Testing Required	Not Required		R&D Record
> 0.1	R&D Only	Exempt for up to 5 years (> 1 ton)*	R&D Form 6		R&D Record

Endpoint	T1	T2	T3	T4	T1	T2	T3	T4
Ecotoxicology data		EU		• •	China		• •	
Short term aquatic tox on Daphnia		_	.0			CII	IIIG	
Growth inhibition aquatic plants (algae)								
Short-term aquatic toxicity to fish					China	China	China	China
Activated sludge respiration inhibition test					Cillia	Chilla	Cinita	Cinia
Long-term aquatic toxicity on Daphnia								
Long-term aquatic toxicity on fish						China		
Fish early-life stage toxicity test						Cillia		
Fish short-term tox test on embryo and sac-fry						_		
Fish, juvenile growth test						_		
Biotic degradation								
Ready biodegradability					China	China	China	China
Ultimate degradation in surface water					Crima	Cillia	Cillia	Cimia
Soil simulation testing						_		
Sediment simulation testing						_		
Hydrolysis as a function of pH								
Identification of degradation products								
Adsorption/desorption screening								
Bioaccumulation in aquatic species (fish)								
Further information on adsorption/desorption								
Environmental fate and/or degradation products								
Short-term terrestrial toxicity on invertebrates					China	China	China	China
Effects on soil micro-organisms								
Short-term terrestrial toxicity to plants								
Long-term toxicity testing on invertebrates								
Long-term toxicity testing on plants								
Long-term toxicity to sediment organisms								
Long-term or reproductive toxicity to birds								
Daphnia magna reproduction								
Seed germination and root elongation toxicity								
Inherent biodegradability						China	China	China

"What are the data requirements to register?"

Testing needed (may be waived)*
Likely superceded by higher tier
Based on exposure assessment
Testing after ECHA approval

	Testing needed		
	(may be waived*)		
	One of tests to be chosen		
China	To be performed in China		

T1: 1-10 tons T2: 10-100 tons T3: 100-1000 tons T4: >1000 tons

Registration Questions

Do I have to register?

What are the data requirements to register?

What is the time-frame and cost to register?

Volume	Australia			
(tons)	\$\$	Time (Months)		
>1000				
100-1000	6k – 300k	6-9		
10-100		0-3		
1-10				

Volume	Chin	a
(tons)	\$\$	Time (Months)
>1000	900k – 1500k	11 – 24
100-1000	475k – 625k	11 – 22
10-100	275k – 375k	11 – 18
1-10	200k – 300k	10 – 12

Costs based on laboratory fees and application fees.

Volume	New Zealand		
(tons)	\$\$	Time (Months)	
>1000			
100-1000	1k – 300k	<1 – 4	
10-100		\1 - 4	
1-10			

Volume (tons)	EU		
	\$\$	Time (Months)	
>1000	350k –2100k	11 – 24	
100-1000	150k – 1100k	11 – 22	
10-100	50k – 550k	11 – 18	
1-10	20k – 120k	10 – 12 GRA	DIENT

Getting the Product to the Customer

Component Name	Percent Composition
Water	25
Sodium chloride	25
Chemical Y	50

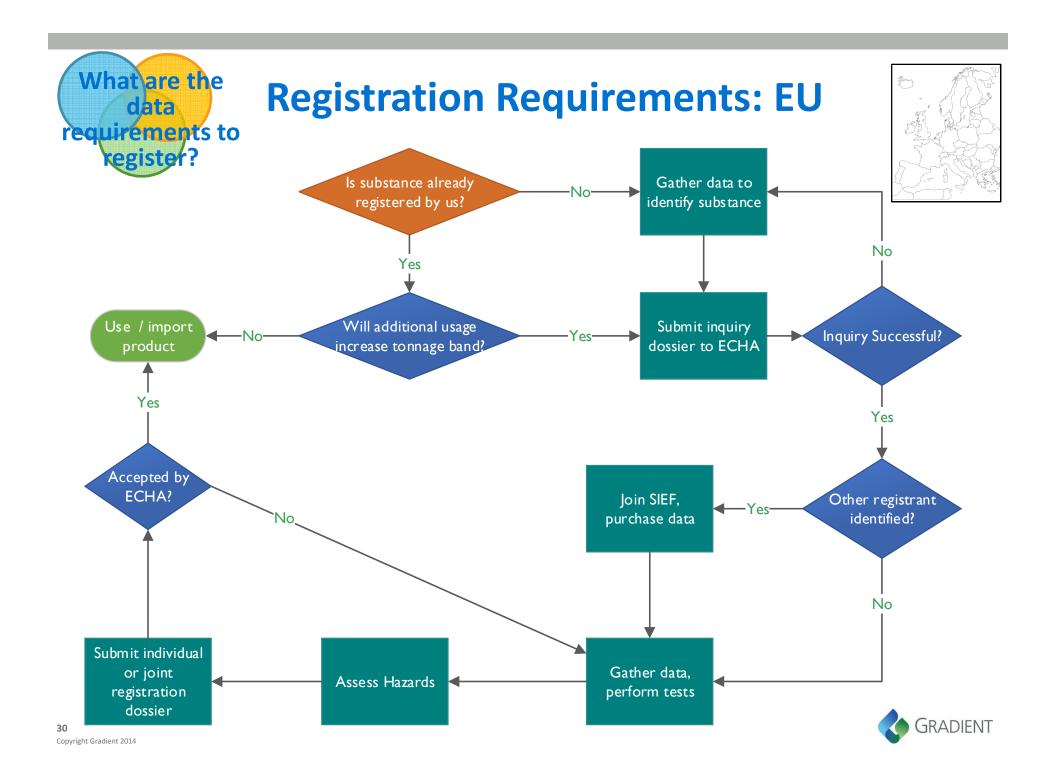
Registration

Jurisdiction A

Do I have to register?

What are the data requirements to register?

Your Chemical Compliance Team


- Business and operations
- Local legal counsel
- Technical expertise:
 - chemistry
 - toxicology
 - ecology

Questions?

jkneeland@gradientcorp.com New Zealand China Australia

