

Dual Function Gas Analyzer For Industrial Monitoring Requirements

Bill Pearman Ph.D Senior Scientist October 16, 2014

IPEC 2014

Dual Function Gas Analyzer For Industrial Monitoring Requirements

1

Discussion Points

- Quick background on IMACC and FTIR
- Needs based assessment
- Brief (very) spectroscopic background Information
 - Fourier Transform Infra-Red
 - Raman
- Instrumental design and data comparison
- Planned events

Many Applications for FTIR

- •Fence-line Monitoring Programs (Consent Decrees, new California rules, monitoring)
- •Ambient Air Monitoring Stations (part of CDs, replacements)
- •Stack testing firms (technology improvement)
- •Flare Testing (passive, TCEQ and EPA accepted technique!)
- •Flare Composition (alternative to \$ GC technology)
- •Fixed FTIR for process control (special applications)
- •Research studies at Universities (volcanology, emissions monitoring, etc.)
- IMACC is seeking new technologies and advancing the application of proven technologies.

IMACC Overview – "Approved" Technologies

SEPA FT-IR OPEN-PATH MONITORING GUIDANCE DOCUMENT

So what is the <u>need</u>?

- Continuous flare monitoring (BTU/scf of inlet vent gas. Calorific value predicts CE)
- Continuous flare "control" dynamic control of supplemental natural gas (add or remove, when, why)
- Dynamic control of steam/air assist (override potential)
- Emissions calculation speciation needed for reporting

Shortcomings with the Current solutions

3 flowmeters and 1 analyzer –

- Flowmeter of choice uses ultrasonic technology – no probe in large diameter pipe, but can't "hear" homonuclear diatomics
- Gas Chromatograph costly shelter, complicated sampling, calibration drift, calibration gases, limited analytes, response time lag

Industrial Flares Need

(minute averaged results)

A compositional analysis in "near real time" to provide -

- nitrogen and hydrogen results for compensation of ultrasonic flowmeters,
- Calorific value BTU/scf
- MW calculation as qa/qc check of ultrasonics flowmeters
- Wider and fuller speciation of the vent gas
- Can we apply our strengths to develop a potential solution??

Infrared Radiation

William Herschel (1738 - 1822): a renowned astronomer who discovered the planet Uranus in 1781; also discovered infrared light.

The absorption of IR radiation transfers energy and heats the surface. IR radiation can be felt, but not seen by the human eye.

Requirements for IR Absorption

To absorb IR radiation, a molecule must have a net change in dipole moment as a result of vibrational or rotational motion.

is a linear molecule. The electron density is distorted toward chlorine (electronegativity of 3.0) in comparison to hydrogen (electronegativity of 2.1).

Molecules have *dipole moments* and are termed *polar* if their centers of positive and negative charge do not coincide.

Molecular Vibrations and IR Spectrum for CO₂

Homonuclear molecules (e.g., N₂, H₂,O₂, Cl₂), have no change in dipole during rotation or vibration motion and therefore do not absorb IR radiation...hence the GC providers are doing well !

What is "Raman"?

- What it is not..
- What it does/is...

- Molecular Spectroscopic Technique
- Qualitative and Quantitative Information
- Relatively weak process

Maruchan

Ork Flavor

Understanding the Raman Results

Current Instrumental Package

Accessory Unit: 10m Gas Cell with FTIR and Raman Capabilities

- Potential for rack mounting
 - Dimensions:
 - Base Unit
 - 16" (l) x 20" (w) x 8" (h)
 - Accessory Unit
 - 24" (l) x 20" (w) x 8" (h)

Base Unit:

FTIR Modulator

Select Raman Responses

FTIR Comparison to GC

Hydrogen using separate H₂ Analyzer compared to GC

Nitrogen by Difference compared to GC

Test for Raman Analysis

- Use of certified hydrocarbon gas mixture
- Test consisted of 5 runs varying concentrations of all species
- HovaCAL used to "blend" hydrogen into gas mixture

<u>Analyte</u>	<u>Bottle</u> Concnetrations <u>(vol %)</u>	<u>Error (± %)</u>		
Methane	19.9	2		
Carbon monoxide	5.01	2		
Acetylene	3.14	2		
n-Pentane	1.52	2		
Propylene	5.05	2		
Ethane	1.99	2		
Nitrogen (balance)	63.39	2		
Hydrogen	99.99	0.01		

Results: HovaCAL to Raman

<u>Run 1</u>		<u>HovaCAL</u>	<u>Raman</u>		<u>Run 2</u>		<u>HovaCAL</u>	<u>Raman</u>
	Methane	7.97	7.84			Methane	11.94	11.80
	Carbon monoxide	2.01	2.03			Carbon monoxide	3.01	3.01
	Acetylene	1.26	1.22			Acetylene	1.88	1.84
	Pentane	Dum F				Daman	0.91	0.91
	Propylene	<u> Kun 5</u>			OVUCAL	<u>kaman</u>	3.03	3.03
	Ethane		Methane		19.9	19.85	1.19	1.15
	Hydrogen		Carbon monoxid	de	5.01	5.04	40	39.20
	Nitrogen		Acetylene		3.14	3.12	38.03	37.40
h			Pentane		1.52	1.52		
			Propylene		5.05	4.96		
Run 3		H	Ethane		1.99	2.00	HovaCAL	<u>Raman</u>
<u></u>			Hydrogen		0	0.30		
	Methane		Nitrogen		63.39	62.72	18.9	18.59
	Carbon monoxide	4.01	3.90			Carbon monoxide	4.76	4.65
	Acetylene	2.51	2.47			Acetylene	2.98	2.92
	Pentane	1.22	1.21			Pentane	1.44	1.41
	Propylene	4.04	3.97			Propylene	4.8	4.68
	Ethane	1.59	1.43			Ethane	1.89	1.77
	Hydrogen	20.01	19.22			Hydrogen	5.04	5.09
	Nitrogen	50.71	49.86			Nitrogen	60.19	58.72

Results: Raman to GC (HovaCAL)

<u>Run 1</u>		<u>GC</u>	<u>Raman</u>		<u>Run 3</u>	3		<u>GC</u>	<u>Raman</u>
	Methane	7.08	7.84		M Ca		thane	15.8	15.76
	Carbon monoxide	1.77	2.03				bon monoxide	4.03	3.90
	Acetylene	Run 5					tylene	3.23	2.47
	Pentane				<u>GC</u>	<u>Raman</u>	tane	1.15	1.21
	Propylene				20.0	40.05	oylene	3.61	3.97
	Ethane		M	etnane	20.8	19.85	ne	1.48	1.43
	Hydrogen		Ca	rbon monoxide	5.45	5.04	rogen	24.6	19.22
	Nitrogen		Ac	etylene	4.42	3.12	ogen	46.1	49.86
			Pe	ntane	1.56	1.52	-		
			Pr	opylene	4.92	4.96			
<u>Run 2</u>			Et	nane	2.05	2.00		GC	Raman
			Hy	drogen	0	0.30			
	Methane		Ni	Nitrogen		62.72 hane		19.4	18.59
	Carbon monoxide	2.85	3.01			Car	bon monoxide	4.96	4.65
	Acetylene	2.13	1.84		A		etylene	4.05	2.92
	Pentane	0.744	0.91			Per	ntane	1.44	1.41
	Propylene	2.36	3.03			Pro	pylene	4.53	4.68
	Ethane	0.98	1.15			Eth	ane	1.87	1.77
	Hydrogen	46.8	39.20			Hy	drogen	6.8	5.09
	Nitrogen	32.9	37.40			Nit	rogen	56.8	58.72

Results: Raman to GC (GC)

<u>Run 1</u>		<u>GC</u>	<u>Raman</u>		<u>Run 3</u>			<u>GC</u>	<u>Raman</u>
	Methane	7.08	7.17			Methan	e	15.8	15.80
	Carbon monoxide	1.77	1.90			Carbon	monoxide	4.03	4.05
	Acetylene	1 38	1 36			Acetyle	ne	3.23	3.24
	Pentane	Dum C			<u>GC</u>	<u>Raman</u>		1.15	1.13
	Propylene	<u>KUN 5</u>					е	3.61	3.55
	Ethane		Met	hane	20.8	20.85		1.48	1.47
	Hydrogen		Carb	on monoxide	5.45	5.63	n	24.6	24.48
	Nitrogen		Acet	vlene	Δ Δ2	4 45		46.1	46.26
			Pent	ane	1 56	1 56			
			Pron	vlene	4.92	4.96			
<u>Run 2</u>			Etha	ne	2.05	2.00		<u>GC</u>	<u>Raman</u>
	Methane		Hydı	ogen	0	0.27		19.4	19.45
	Carbon monoxi		Nitro	ogen	60.8	61.02	nonoxide	4.96	5.00
	Acetylene	2.13	2.23			Acetyle	ne	4.05	4.02
	Pentane	0.744	0.78			Pentane	è	1.44	1.41
	Propylene	2.36	2.48			Propyle	ne	4.53	4.50
	Ethane	0.98	1.30			Ethane		1.87	1.61
	Hydrogen	46.8	46.99			Hydroge	en	6.8	6.71
	Nitrogen	32.9	32.95			Nitroge	n	56.8	56.80

Conclusion

IMACC has identified an industrial need and has a new viable solution (patent-pending!)

- Theoretical Design
- Proof of Concept bench tests successful
- Local and remote location
- Field Demo 3 planned before end of year

IMACC device yields minute resolved results

- Continuous BTU monitoring
- Improves dynamic control of supplemental gas and steam or air assist
- Continuous emissions monitoring

Contact Information

Troy M. Boley, Ph.D. <u>tboley@imacc-instruments.com</u> Robert Spellicy, Ph.D. <u>rspellicy@imacc-instruments.com</u> Ralph Brewer, Ph.D. <u>rbrewer@imacc-instruments.com</u> Bill Pearman, Ph.D. <u>bpearman@imacc-instruments.com</u>

IMACC, LLC 800 Paloma Drive Suite 150 Round Rock, TX 78665 (512) 341-8189 www.imacc-instruments.com

