CFD Simulations of H₂S-Rich Plumes from Oil/Gas Well Blowouts

Stephen G. Zemba, PhD, PE

Robert S. Saikaly Jared D. Newell Jonathan E. Welch Toros L. Maksoudian Cynthia S. Hibbard Kevin P. Molloy

October 16, 2014

sandia.gov and noaa.gov

Background

- Oil and gas wells under high pressure can inadvertently "blowout" and release significant quantities of oil and gas
- Gas in some formations contains as much as 90% H₂S
- Blowout releases typically self-ignite or are intentionally ignited
- If not ignited, releases can behave as dense gases, and dangerous (toxic or lethal) H₂S concentrations persist for considerable distance

Setting

- Client involved in oil/gas well exploration in very rugged terrain
- Closest inhabitants a few km distant
- Goal: Design Emergency Response Planning Procedures to protect local populations
- Information uncertain
 - Reservoir characteristics
 - Meteorological data

Available Models and Tools

- U.S. EPA Appendix W Modeling Guidance offers no recommended models for dense gas dispersion
- Alternative Models listed on EPA's Support Center for Regulatory Atmospheric Modeling (SCRAM) website list ADAM, DEGADIS, HGSYSTEM, PANEPR (PANACHE), and SLAB as candidate dense gas dispersion models
- Other options: ALOHA, ERCBH2S, and PHAST
- Of these candidates, only PANEPR is designed for application in complex terrain, and it was selected for this application

PANEPR Model

Licensed by fluidyn

- Based on computational fluid dynamics (CFD)
 - Not a traditional Gaussian plume/puff approach
 - Solves basic mass, momentum, and energy equations using finite element discretization of a threedimensional grid
 - Turbulence modeled based on fluid dynamics
- Considerable flexibility, numerous options

Source Modeling

- Based on representative reservoir properties, anticipated production rate, and gas-to-oil ratio (GOR)
- Simplified source parameterization
 - Interest focused on far-field predictions
 - Assume flashing evaporates oil-phase to produce a dense gas mixture
 - Mix the release into an elevated volume source
- Release properties
 - 0.28 kg/s H_2 S emission rate (12.1% H_2 S mixture)
 - 144 g/mol average molecular weight
 - Source concentration ~750 ppm (within volume source)

Model Options

Computational grid

- Unstructured grid resolved in source region
- 62 vertical layers (2000 m), 4616 cells per layer (~3 km × 4.5 km)
- Inflow boundary condition at upwind domain edge
- κ-ε turbulence model
- Meteorological conditions
 - Specified through surface heat flux and vertical temperature gradient
 - Two simulations
 - Pasquill-Gifford Class D, 10-m wind speed 2 m/s
 - Pasquill-Gifford Class E/F, 10-m wind speed 1 m/s

H₂S Toxicity Guidelines for Emergency Planning

	Toxicity Guidelines				
H ₂ S Concentration (ppm)	American Conference of Industrial Hygienists (ACGIH) National Research Council (NRC) National Institute for Occupational Safety and Health (NIOSH) American Industrial Hygiene Association (AIHA)				
1	ACGIH's recently revised & NRC's 90-day Emergency	-hour Threshold Limit Value (TLV) Exposure Guidance Level (EEGL)			
10	ACGIH's former 8-hour TLV NRC's 24-hour EEGL NIOSH's 10-minute Recommended Exposure Limit (REL)				
100	AIHA Emergency Response Planning Guideline (ERPG-3) <1 hour exposure not life threatening for most people NIOSH Immediately Dangerous To Life or Health (IDLH)				
H ₂ S Odor Thre	shold ~0.001 ppm		CDM		

Smit

Steady State Plume (Simulation time 2 hours) Stable (E/F) case, 1 m/s wind speed

- Ground-level plan view (left) and centerline vertical crosssection (right)
- Some influence of terrain on wind field
- Some influence of buoyancy in near field

Example Results (GIS Version)

Class D simulation

fluidyn PANEPR Model Predictions

Scenario	Maximum Concentration (ppm)	Downwind extent of H ₂ S concentration (km) at end of simulation			
		100 ppm	10 ppm	5 ppm	1 ppm
Stable (Class E/F) 1 m/s wind	790	0.35	2.1	3.3	> 4
Neutrally stable (Class D) 2 m/s wind	202	0.2	0.7	1.2	2.1

ALOHA Model Predictions Similar source parameters

 User-defined chemical with thresholds adjusted to match 100, 10, and 1 ppm H₂S levels

 Simulation at left matches stable (Class E), 1 m/s wind speed

Comparison of PANEPR and ALOHA Models

Scenario	Model	Downwind extent of H ₂ S concentration (km)		
		100 ppm	10 ppm	1 ppm
Stable	PANEPR	0.35	2.1	> 4
1 m/s wind	ALOHA	0.46-0.53	1.5-1.7	5.7-6.2
Neutrally stable	PANEPR	0.2	0.7	2.1
2 m/s wind	ALOHA	0.28	1.1	4.6

Blowout Parameterization – Larger Source Minor effects on far field plume (left) Source size affects peak near-field concentrations (right)

Blowout Parameterization – Smaller Source Minor effects on far field plume (left) Source size affects peak near-field concentrations (right)

Effects of Terrain

Side-by-side comparison, with (left) and without (right) terrain

Conclusions and Observations

- PANEPR is able simulate plume dispersion to significant distances (several km) in very rough terrain
 - Accounts for highly varying terrain
 - Considers dense gas effects
 - Some evidence of terrain-induced dispersion and gravity channeling effects
- Predictions similar to those of the simple ALOHA model (based on preliminary comparisons)
- Uncertainties to consider
 - Source modeling
 - Grid resolution and boundary condition effects
 - Atmospheric boundary layer characterization

Thanks ...

• for your attention – and attending the final session!

Questions or Comments?

