Detecting and Characterizing Oil Agglomerates in Water Using Particle Imaging

Kent Peterson Fluid Imaging Technologies, Inc. Kent.peterson@fluidimaging.com

Outline

- What is Dynamic Imaging Particle Analysis?
- History of Particle Imaging So Far With Produced Water
- Limitations Found for Oil Agglomerates
- Proposed Methods
- Next Steps for the Technology

What is Dynamic Imaging Particle Analysis?

- "Automated Microscopy"
- Sample is Moved Through Optical Path "Dynamically" & Imaged in Real-Time
- Large Number of Measurements Enables Differentiation by Shape
- "Shape Filters" Automatically "Bin" Particles Into Different Types
- High Quantity of Particles Measured Yields
 Higher Statistical Confidence

How It Works Flow Cell View

FlowCAM Overview

- Collects size, shape, and count data upwards of thousands of particles/second at 20 frames/second
- Allows query and examination of individual particle images and associated morphology
- Wide particle size range 2µm-2mm
- Low sample volume (~ 35 ul)
- Total Magnification from 20x to 200x

FlowCAM Models

Benchtop

Portable

PetroCAM

How It Works Imaging Mode

How It Works Size Distribution View

How It Works Filtered View by Particle Type

How It Works Particle Collage View

and the second second	-	-		Particle Properties	
				Particle ID	49064 🔦
000	6680	10 10		Aspect Ratio	0.85
809 5782	6275	7372	2453 16575	Average Blue	81.87
0802		9948	12687	Average Green	88.98
54 (MAR)		100		Average Red	93.31
· S			0 0 0	Circle Fit	0.84
		45511	48029 40407	Circularity	0.87
38480	40334 #	44617	40123 40127	Circularity (Hu)	0.98
38445			490	Compactness	1.15
	-	A 12 12	-	Convex Perimeter	114.19
090	T 10 1			Convexity	1.00
00400		04400	95500 00007	Date	2013-08-14
02422 # 005/8	# 6/246 69	572 81438 83198	000/2 8030/	Diameter (ABD)	32.34
	π		00	Diameter (ESD)	33.76
				Edge Gradient	132.76
				Elongation	1.00
				Feret Angle Max	85.00

Round Dispersed Oil Droplets

1.3

Non-Oil Droplets

Early History Summary

- Particle Imaging Can Easily Distinguish Oil Droplets From Other Particulates Merely by Shape
 - Oil Droplets Perfectly Round
 - Other Particulates Varying Degrees Less Round
- Fine for Cleanly Dispersed Single Droplets

But What About Agglomerated Oil Droplets?

 Can Have Same Aspect Ratio As Other Particulates:

• Oil Droplets Can Also Adhere to Solids:

18

- In Some Produced Water Samples, the Volume of Oil Represented by Agglomerates May Be Very Significant
- So, HOW do we Measure Aggregated Oil Droplets in Those Samples?
 - Need to Isolate Droplets First
 - Then Count Them Individually
 - Add Count to Original Isolated Oil (Singlets)
 - Total Volume for ALL

Methodology Used:

- **1. Detect Full Particle Image**
- 2. Detect Edges on Image
- **3. Identify Circular Arcs**
- 4. Fit Circles to Arcs
- 5. Calculate Spherical Volume of Each Circle

Example of Method

original image	edges separated	arcs identified	circles identified
0		$\rightarrow \bigcirc$	
Ŷ			

Example of Method

Sphere Count, Volumes as added particle properties

🙀 Particle Properties	×	
Particle ID	6578	*
Diameter (ESD)	71.48	
Edge Gradient	73.59	
Elongation	14.43	
Feret Angle Max	-10.00	
Feret Angle Min	-80.00	
Fiber Curl	0.92	
Fiber Straightness	0.52	
Filter Score	0.00	
Geodesic Aspect Ratio	0.07	
Geodesic Length	180.01	
Geodesic Thickness	12.47	
Image File	000009.tif	
Intensity	130.00	
Length	93.94	
Particles Per Chain	1	
Perimeter	384.97	
Roughness	2.33	
Sigma Intensity	33.91	
Source Image	2466	
Sphere Complement	0.00	
Sphere Count	15	
Sphere Volume	557.28	
Sum Intensity	1.04e+006	
Symmetry	0.64	
Time	10:13:49	
Transparency	0.30	
Volume (ABD)	65375	
Volume (ESD)	191216	
Width	37.40	Ŧ

Example: Single Droplet

3849

Sphere Complement	0.00
Sphere Count	1
Sphere Volume	4200.11

Example: Oil Agglomerate

5157

Sphere Complement	1196.47
Sphere Count	14
Sphere Volume	743.12

Set Droplet & Solids Densities

2
a
0.930
2.400
55.0%
Cancel

Agglomerate Droplet Analysis

- Use droplet count, oil volume, solids volume
- Calculate average droplets per particle, average droplet size, and average solids size over the range of particle sizes
- See trends of particle size over time

Agglomerate Droplet Analysis

Limitations of Method

- Look at droplets down to 4 um
- Works best on suspended oil droplets rather than on globs of free oil where sample is not so saturated that oil droplets are clearly visible
- Can be used for oil in water or water in oil

Questions?

Thank You!

Steve Bowen 281-639-5758 steve.bowen@fluidimaging.com

