

Design of Raceway Ponds for Algae Biomass Production using Produced Water

Soumya Yadala, Selen Cremaschi, PhD The University of Tulsa

2014 International Petroleum Environmental Conference Houston, TX October 14-16,2014

October 15, 2014

Presentation outline

- 2 1
- Algae based-Biodiesel

Algae oil Production

Research Objective

Mathematical Modeling

6

Motivation – Produced water

- These waters exist under high pressures and temperatures
- It can contain very minor amounts of chemicals, oil, and metals
- Every year in the United States about 800 billion gallons of produced water is brought to the surface along with oil and gas and about 98% of this water is routinely disposed as a waste product
- However, these large quantities of saline water have great potential value for algal biofuel production
- Scientists recently were successful in conducting the first pilot-scale test of algae growth using water from an oil-production well in Jal, New Mexico

Advantages

Challenges

Algae oil Production

Research Objective

Optimization

To minimize the cultivation costs of algae oil by designing optimal cultivation systems

Raceway Pond Cultivation Technology

TUPSE

Alternatives

Decision Variables

Capital Costs

- Site Preparation
- Pond levees
- Paddle wheel
- Harvesting
- Flocculation
- Extraction
- Water & nutrient supply
- Waste treatment
- Buildings, roads, drainage
- Electric Supply and distribution
- Instumentation and machinery
- Engineering and contingency
- Land

Operating Costs

Soumya Yadala, Selen Cremaschi 2014 IPEC

T_{oond}

 Q_i

Results

	Z (\$)	Depth (m)	Width (m)	Length (m)	V (m³)	SA (m²)	I _{avg} (μE m ⁻² s ⁻¹)	Uavg (m s ⁻¹)	BC (g l ⁻¹)	μ (h ⁻¹)	PrV (g m ⁻ ³ h ⁻¹)	T _{pond} (C)
1	275,383	0.103	5.45	217.92	242	2349	43	0.108	5.24	0.324	2381	21
2	183,454	0.105	4.07	162.80	138	1311	44	0.109	7.26	0.478	4185	28
3	347,304	0.104	6.29	251.46	326	3128	45	0.104	4.59	0.278	1771	19
4	236,427	0.100	4.95	198.01	194	1939	42	0.104	5.89	0.389	2974	26
5	423,761	0.100	7.08	283.10	396	3964	56	0.133	4.29	0.334	2148	21
6	227,540	0.100	4.73	189.15	177	1770	51	0.144	6.74	0.602	4811	28
7	662,802	0.118	9.07	362.75	770	6509	61	0.122	3.07	0.251	1106	19
8	341,389	0.100	6.22	248.96	307	3066	52	0.134	4.90	0.438	2777	26

Total cost of producing about 1000 tons/year of algae oil = 0.062 per gallon

Results

Sensitivity Analysis

18	Introduction		Appl	ication	Ме	Methodology		Results		Conclusion			
	Sensitivity Analysis -1 (Variation in pond depth)												
	Z (\$)	Depth (m)	Width (m)	Length (m)	V (m³)	SA (m²)	I _{avg} (μE m ⁻ ² s ⁻¹)	Uavg (m s ⁻ ¹)	BC (g I¹)	μ (h ⁻¹)	PrV (g m⁻³ h⁻¹	T _{pond} (C)	
2 9	183,454 198,838	0.105 0.300	4.07 4.20	162.80 167.91	138 418	1311 1395	44 26	0.109 0.100	7.26 4.65	0.478 0.265	4185 1379	28 29	
10	213,816	0.500	4.33	173.25	742	1485	20	0.100	3.70	0.198	777	29	

Sensitivity Analysis -2 (Variation in recycle efficiency)

	Z (\$)	Depth (m)	Width (m)	Length (m)	V (m³)	SA (m²)	I _{avg} (μE m ⁻ ² s ⁻¹)	Uavg (m s [.] 1)	BC (g l ⁻¹)	μ (h ⁻¹)	PrV (g m ⁻³ h ⁻¹	T _{pond} (C)
11 12	424,689 298,429	0.100 0.100	4.14 4.13	165.40 165.22	135 135	1353 1350	38 38	0.111 0.111	10.0 10.0	0.426 0.427	4262 4272	28 28
2	183,454	0.105	4.07	162.80	138	1311	44	0.109	7.26	0.478	4185	28

Sensitivity Analysis -3 (Variation in length/width ratio)

	Z (\$)	Depth (m)	Width (m)	Length (m)	V (m³)	SA (m²)	I _{avg} (μE m ⁻ ² s ⁻¹)	Uavg (m s [.] 1)	BC (g l ⁻¹)	μ (h ⁻¹)	PrV (g m ⁻³ h ⁻¹	T _{pond} (C)
13 2	183,319 183,454	0.105 0.105	5.79 4.07	115.72 162.80	137 138	1310 1311	44 44	0.100 0.109	7.26 7.26	0.479 0.478	4198 4185	28 28
14	183,585	0.105	3.32	199.06	138	1311	43	0.119	7.26	0.477	4171	28

Conclusions

Introduction

19

Application

Methodology

Results

Conclusion

❑ A mathematical framework is developed to estimate the best combination of <u>algae species</u>, <u>geographical location</u>, and raceway <u>pond geometry</u> by combining experimentally validated temperature, irradiance, and algae growth models with optimization

□ In order to represent the actual behavior of the outdoor raceway pond, the current model takes into account the <u>diurnal pattern of sunlight</u>, <u>temperature</u> <u>fluctuations</u>, the <u>dynamic behavior of solar zenith angle</u>, and mixing which makes it more realistic compared to the other models in the literature

□ This method enables to record the change in culture properties such as biomass concentration, productivity, and growth rate over time

Future directions

Model the dynamic behavior of algae biomass cultivation and biodiesel production using HYSYS simulation software

Model the network flow topology of algae oil distribution in the United states

Acknowledgement

Department of Chemical Engineering, The University of Tulsa

Conclusion

Total cost of producing about 10,000 gallons/day of biodiesel = \$0.062/gallon

THANK YOU

Questions???

Soumya Yadala, Selen Cremaschi 2014 IPEC

October 15, 2014