Hydraulic Fracturing Fluid Forensics: Potential and Pitfalls

Jessie M. Kneeland, Ph.D. Eric L. Butler, Ph.D.

> November 12, 2013 20th IPEC Conference San Antonio, TX

Overview

- What makes a good forensic marker?
 - Detection
 - Attribution
- What chemical signatures have been used previously?
 - Total dissolved solids, major ions
 - Naturally occurring radioactive material (NORM)
 - Petroleum hydrocarbons
 - Methane isotopes
- Potential new markers
 - Specific chemicals
 - Isotopic signatures
- Which have potential? Which have pitfalls?

What makes a good forensic marker?

Detection

Is the signal big enough to (cost effectively) measure?

Attribution

Is the signal unique enough to point to a specific source?

Where can we look for forensic markers?

- Fracturing fluids
- Flowback water
- Produced water
- Groundwater/ drinking water
- Surface water
 (*e.g.*, lakes, streams)

Fracking Fluids, Flowback, and Produced Water

- Fracking fluids injected under pressure
- "Flowback" returns to the surface
- Produced water common to all oil and gas extraction

Chemical Signatures of Hydraulic Fracturing

- Total dissolved solids and major ions
- Naturally occurring radioactive material (NORM)
- Petroleum hydrocarbons, BTEX
- Methane isotopes (C, H)

Total Dissolved Solids and Major Ions

USGS, 2012

Total Dissolved Solids and Major Ions

Total Dissolved Solids and Major Ions

- Easy to detect
 - High concentration
 - Routine measurement
- Difficult to attribute
 - Alternative sources (e.g., road salt)
 - May attribute to formation
 - Common to all produced water
 - Signature changes during transport (precipitation, dissolution of salts)
 - Produced water recycling could complicate interpretation

- Not easy to detect in water
 - May be easier in sediments: Warner *et al.* (2013) study at Josephine brine facility
- Attribution not very specific
 - May attribute to a formation
 - Common to all produced water

Petroleum Hydrocarbons

Petroleum Hydrocarbons

US EPA, 1992

Petroleum Hydrocarbons

- Possibly easy to detect
 - Hydrocarbon fingerprinting is routine with standard methods
 - Depends on dilution
- Moderately easy to attribute
 - Bulk methods like TPH (GRO, DRO) are NOT specific enough
 - Highly specific components (biomarkers) difficult to detect
 - Volatile compounds (BTEX) evaporate
 - Biodegradation may affect signature
 - Many potential sources

Methane Isotopes

Methane Isotopes: Case Studies

- Osborn *et al.,* 2011
 - Groundwater near Marcellus Shale
 - Isotopes show thermogenic signature
- Molofsky et al., 2013
 - Groundwater near Dimock, PA
 - Isotopes show thermogenic signature
 - Could not distinguish between Marcellus gas and shallower gas in casing string annular spaces
- Warner *et al.,* 2013
 - Groundwater near Fayetteville Shale
 - Concentration not higher near production wells
 - Isotopes do NOT show thermogenic signature

Methane Isotopes

- Hard to detect
 - Need enough methane to get a robust isotopic measurement
- Attribution not very specific
 - Biogenic vs. thermogenic
 - Most samples are somewhere in the middle
 - Thermogenic gas not specific to hydraulic fracturing

Potential New Markers

- Isotope analysis of brines, gases
- Compound specific isotope analysis
- Specific chemicals in fracking fluids
- Tracers (*e.g.*, perfluorinated compounds) intentionally added to fracking fluids

Questions?

Water Isotopes

Advanced Resources International, Inc., 2005

Oxygen and Hydrogen Isotopes

- Reasonably easy to detect
- More difficult to attribute
 - Distinct isotopic signature of formation water
 - Mixing between shallow groundwater and deep source may look like a different source

Methane Concentrations

