Water recycling in the oil field – how one service company does it

Clay Maugans, Ph. D. - Select Energy Services
Outline

- Different frac’s use different chemistry
- Water quality needs – Chem 101
- Treatment techniques
 - Low-level
 - Mid-level
 - High-level
- Bonus challenges
Different formations need different frac strategy

- **Geology**
 - Shale/tight sandstone/porosity
 - Permeability
 - Minerals
 - Frac program:
 - Linear
 - Bilinear
 - Radial
- **Vertical Well**
 - More often use simpler chemistry
- **Horizontal Well**
 - More often use complex chemistry fracs
What are the different types of frac packages?

- **Slick**
 - Forgiving chemistry (FR)
 - Consumes more water/stage
 - Minimal treatment

- **Gel**
 - Variable complex chemistry
 - Variable treatment needs
 - More water efficient/stage

- **Crosslink Gel**
 - Complex chemistry
 - Highest water quality needs
What happens if I can’t use fresh water and have contaminants? Frac contaminant chemistry 101

- Biological activity
- Turbidity (TSS + oil)
- Iron (Fe)
- Hardness & Sulfate
- Salts (including Boron)
Frac contaminant chemistry 101

- Biological activity
 - Slime formation (loss of conductivity)
 - H_2S formation (safety and quality loss)
 - Corrosion (acid byproduct corrosion of piping and equipment)
Frac contaminant chemistry 101

• Biological activity
 • Slime formation
 • \(\text{H}_2\text{S} \) formation
 • Corrosion

• Turbidity (TSS + oil)
 • Consumes friction reducer (chemical bill goes up)
 • Solids can plug gaps between proppant (loss of conductivity)
 • Oil content is bug food during storage (water & well fouling)
Frac contaminant chemistry 101

- Biological activity
 - Slime formation
 - H_2S formation
 - Corrosion
- Turbidity (TSS + oil)
 - Consumes friction reducer
 - Solids can plug gaps between propant
 - Oil content is bug food during storage
- Iron (Fe)
 - Can react and precipitates as a scale down hole (loss of conductivity)
 - Frac chemistry interference (particularly crosslinkers)
Frac contaminant chemistry 101

- Biological activity
 - Slime formation
 - \(\text{H}_2\text{S} \) formation
 - Corrosion
- Turbidity (TSS + oil)
 - Consumes friction reducer
 - Solids can plug gaps between proppant
 - Oil content is bug food during storage
- Iron (Fe)
 - Can react and precipitates as a scale down hole
 - Frac chemistry interference
- Hardness & Sulfate
 - Scaling (loss of conductivity)
 - Interference with frac chemistry (crosslinkers + hydration of FR)
Contaminants: What do they do?

Frac contaminant chemistry 101

- Biological activity
 - Slime formation
 - H₂S formation
 - Corrosion
- Turbidity (TSS + oil)
 - Consumes friction reducer
 - Solids can plug gaps between proppant
 - Oil content is bug food during storage
- Iron (Fe)
 - Can react and precipitates as a scale down hole
 - Frac chemistry interference
- Hardness & Sulfate
 - Scaling
 - Interference with frac chemistry
- Salts
 - Affects frac chemistry (hydration & crosslinking)
 - Affects clay swelling (a good thing)
Recycle treatment levels

• Low level: Basic
 • Forgiving system and more is not needed
 • Willing to accept some risk

• Mid level: Clean brine
 • Target contaminant removal
 • Some risk mitigation

• High level: Fresh water
 • All TDS removed
 • Risk elimination
 • Simplified water logistics
Low level: Used for diluted and forgiving frac

- Bag filter
 - Pump through a pod with 50-100 micron sack filters
 - High rate and removes gravel, turtles, and twigs
 - Essentially no effect on anything else
- Bag filter + biocide
 - Same as above, plus sterilizes the water
- Field oxidation (ClO₂, H₂O₂, etc.)
 - Good sterilization
 - Harsh chemicals - require some care to avoid sending residual oxidizer downstream
 - Can create a solids byproduct issue

40Kbbi tank 50% full of sludge
Mid level: Clean Brine - Good enough for most frac’s with low risk

- EC + chemical treatment
 - Electrical current to aid coagulation
 - Chemical addition for further treatment
 - Settling tanks and polish filtration
 - Removes turbidity, Fe, bugs, and some hardness
Mid level: Clean Brine - Good enough for most frac’s with low risk

- EC + chemical treatment
 - Electrical current to aid coagulation
 - Chemical addition for further treatment
 - Settling tanks and polish filtration
 - Removes turbidity, Fe, bugs, and some hardness

- Mobile clarification
 - Chemical addition for solubility adjustment and flocculation
 - Settling chambers with inclined plates for turbidity removal
 - Removes turbidity, Fe, bugs, some hardness
 - Filter press to minimize solids – dry cake solid waste
Mid level: Clean Brine – what if I want high rate treatment?

- Oxidation + solids management
 - ClO₂ oxidation, which is traditionally done for bio-kill.
 - Also a good mid-level recycle treatment – WHEN APPLIED CORRECTLY. Removes turbidity, iron, and sterilizes.
 - Integrated.
- High rate treatment (40k bbl/day flowback. Same rate as frac with fresh water).
- Differentiating ClO₂ approach
 - Professional. $55MM development program.
 - 20 units.
 - Over 1000 inputs into the PLC for control.
 - Top safety integration.
 - Control every drop of water, not just a slip stream like most providers.
Water purification – High level: Good for all frac

- Oxidation plus membrane (OMNI)
 - Pretreat with: Ozone + chem-treat before membrane
 - Removes Fe, turbidity, bio, and some hardness
 - Oxidizes or removes membrane harming organics
 - Followed by membrane treatment
 - First banks of membrane removes all the hardness
 - Final bank of membranes remove TDS – giving pure water
 - Low TDS water: removed nearly all contaminants
Water purification – High level: Good for all frac – risk elimination

- Oxidation plus membrane
 - Pretreat with Ozone + chem-treat before membrane
 - Removes Fe, turbidity, bio, and some hardness
 - Oxidizes or removes membrane harming organics
 - Followed by membrane treatment
 - First banks of membrane removes all the hardness
 - Final bank of membranes remove TDS – giving pure water
 - Low TDS water: removed nearly all contaminants

- Thermal evaporation (NOMAD)
 - Pretreat with mobile clarification
 - Remove Fe, turbidity, bio, and some hardness
 - Dry cake solid waste
 - Distill with mechanical vapor recompression
 - High thermal efficiency (20x higher than simple boiling)
 - Distillate quality water - some states allow to transfer/store/handle like fresh water
Points to remember

• Economics rarely sell recycling – it’s lack of availability that sells it
• There is no one-solution, because different frac calls for different quality water, that has different starting points.
• Select does not develop or own a water treatment technology – we partner with the developers and work with their operations to execute an overall project that includes the right treatment tech.
Purpose: Insufficient fresh water, so recycle high H$_2$S produced water for frac

Who: Apache

Job: Mob/Demob to central site and produce 250,000 BBL for use in a 4 well frac program

When: May - July 2013

Where: Notrees TX, Permian Region

What: Fountain Quail ROVER system + H$_2$S agent; Big Holdings containment; transfer

How: Neutralize H$_2$S; remove turbidity & Fe; kill bacteria; make clean high TDS reuse water for frac; inventory in tank; minimized solids waste

Result: Wells frac’d on schedule and on budget. Just starting another 40 well treatment campaign with same customer using the ROVER.
Additional oilfield water challenges to manage

• Sulfide laden water management
 • Oxidize (ClO₂, H₂O₂, Ozone)
 • Sequester (Agent)
• Stagnant water pit souring
 • Manage by aeration to oxygenate and prevent SRB from souring
• Pit volume uncertainties
 • 1-time Remote boat surveys with soundings for pit depth mapping
 • Real-time depth monitoring sensor with satellite coms.
• Zero liquid discharge
 • Complete elimination of all liquid streams – it’s an option.
• Overall water program management
 • Service providers:
 Source, transfer, containment, monitoring, treatment, disposal.