Use of LNAPL Transmissivity to Evaluate Performance of Free-Product Recovery Systems

Daniel J. Lombardi, P.G.

20th International Petroleum Environmental Conference San Antonio, Texas November 12, 2013

Site Background

- Petroleum Refinery Located in Midwest and Operated from 1941 to Early 2000's
- Subsurface Geology
 - Large River Valley (~175 square miles)
 - Fine-Grained Alluvial Deposits Overlies Coarser Grained Glaciofluvial Deposits
- Hydrogeology
 - Unconsolidated Aquifer (Transmissivity $[T_w] = \sim 1,000$ to 75,000 ft²/day)
 - River is the Primary Hydraulic Boundary
 - Groundwater Surface Fluctuates Across the Site ~3 to 14 feet
- Historic Releases of Petroleum Over the Period of Refinery Operations
- LNAPL Hydraulically Recovered Using Skimmer Pumps (SPR), Periodic Manual Removal (via Vacuum Truck) and Multiple-Phase Extraction (MPE) Systems (Fixed-Based and Mobile)
- ~1,500,000 Gallons Recovered Since 1994

Skimmer Pump Recovery (SPR) – Site Examples

- Baildown Test Data Analyzed User Guide for API LNAPL Transmissivity Workbook and Spreadsheet: A Tool for Baildown Test Analysis (Pre-Publication Draft, September 2012)
- Recovery-Based Data Analyzed Standard Guide for Estimation of LNAPL Transmissivity (ASTM E2856-13)
- SPR-001
 - Confined I NAPI
 - 8 Years / ~73,500 Gallons Recovered (~130 to less than 0.5 GPD)
 - Recovery-Based / Baildown Comparison Similar Trend
- SPR-002
 - Unconfined to Confined LNAPL
 - 9 Years / ~15,000 Gallons Recovered (~15 to less than 0.5 GPD)
 - Recovery-Based / Baildown Comparison Similar Trend

LNAPL Skimming – Recovery Data Analysis

Assumptions:

- Fluid Levels at Equilibrium
- SPR System Maintains Constant Drawdown and Zero LNAPL Thickness
- Maximum Estimated Drawdown Based on Equations for Confined and Unconfined Conditions
- $l_n(R_{oi}/r_w) = 4.6$ (Charbeneau, 2007 and ASTM, 2013)
- LNAPL T_n within One Order of Magnitude of Actual LNAPL Transmissivity Value

$$T_n = \frac{Q_n ln\left(\frac{R_{oi}}{r_w}\right)}{2\prod s_n}$$

Equation 16(ASTM, 2013)

 $T_n = \text{LNAPL transmissivity (ft}^2/\text{day)}$

 Q_n = Measured LNAPL removal rate (ft³/day)

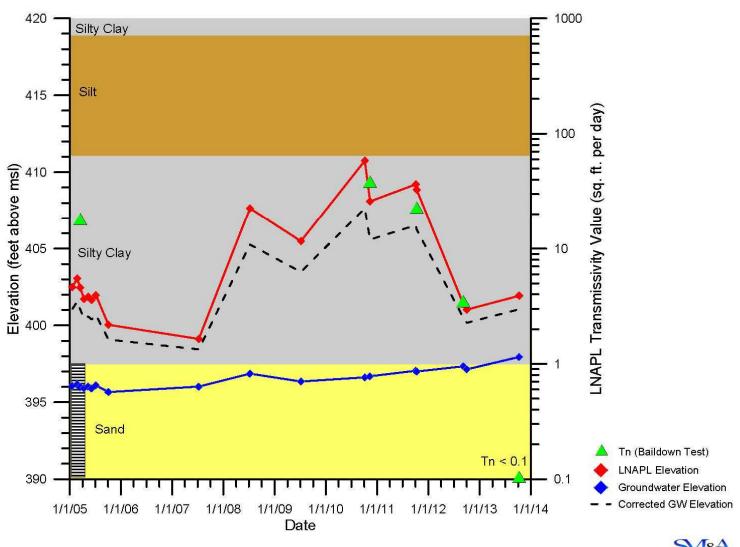
 s_n = Estimated LNAPL drawdown (ft)

 R_{oi} = radius of influence (ft)

 r_w = well radius (ft)

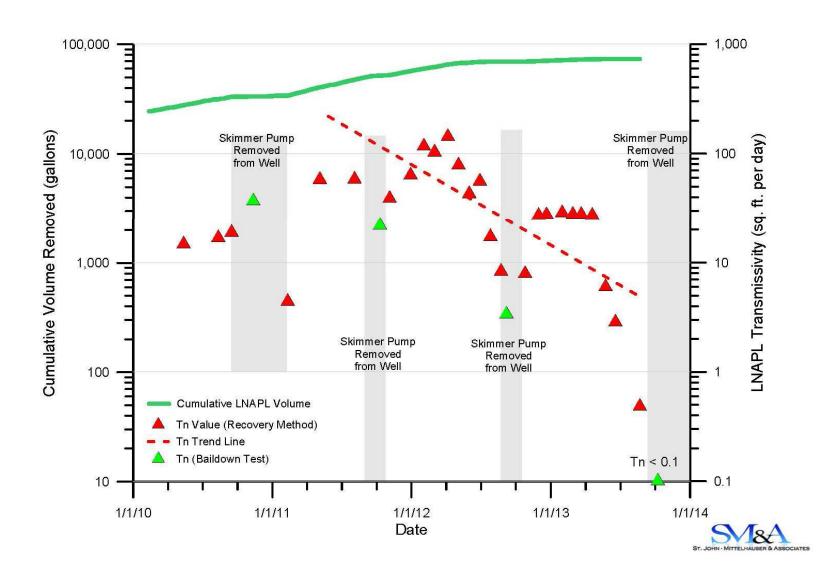
 $b_n = LNAPL$ thickness in well (ft)

 $b_{nf} = LNAPL$ thickness in formation (ft)

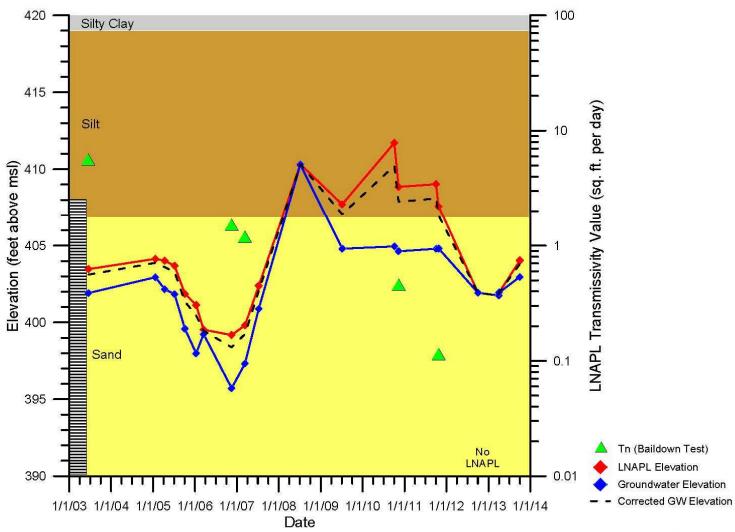

 $p_n = LNAPL$ density

$$s_{n \ unconfined} = b_{n}(1 - p_{n})$$

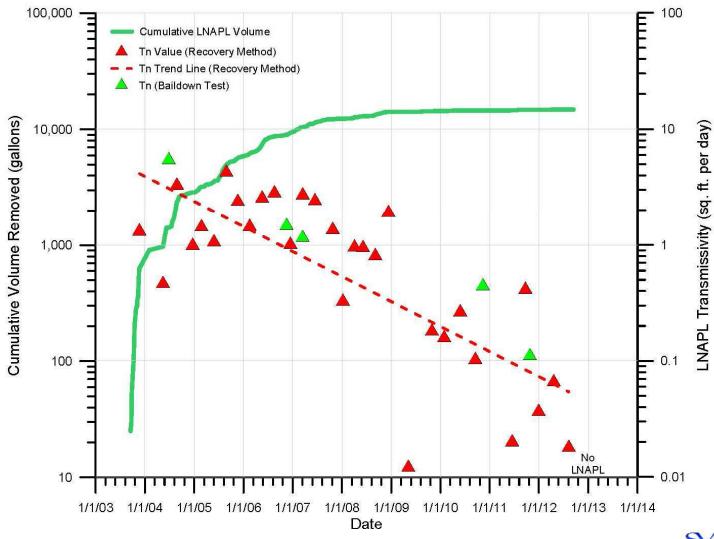
$$s_{n_confined} = b_{nf} (1 - p_n)/p_n$$



Fluid Elevations and Tn Values at SPR-001

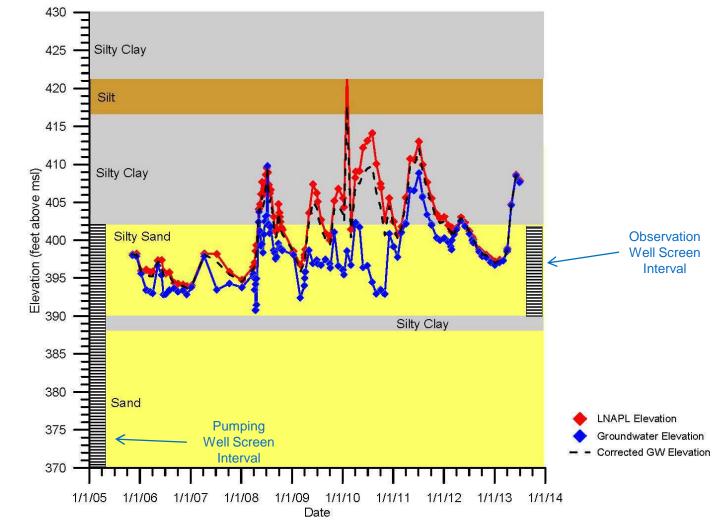


Cumulative LNAPL Removal and Tn at SPR-001



Fluid Elevations and Tn Values at SPR-002

Cumulative LNAPL Removal and Tn at SPR-002



Dual Pump Recovery (DPR) – Site Example

- Large Diameter Pumping Well (DPR-001) Upper 30 feet of Aquifer
- Groundwater Pumping Rates Ranged from 85 to 220 GPM
- Pneumatic Skimmer Pump Installed First Year
- 7 Years / ~118,000 Gallons of LNAPL Recovered (~300 to less than 0.5 GPD Average)
- Variable Recovery-Based Trend

Observation Well Fluid Elevations Near DPR-001

Note: Fluid Elevations from an observation well located ~5 feet from DPR-001.

Water-Enhanced LNAPL Recovery – Data Analysis

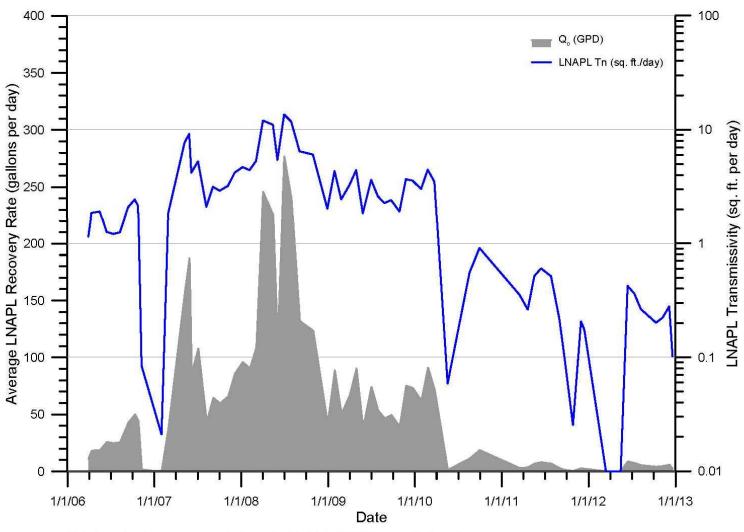
- Dual-Pump Recovery
- Assumptions:
 - Aquifer Transmissivity is 19,000 ft²/day (based on pumping tests)
 - Water Induced Drawdown is Substantially Greater than Skimming Induced Drawdown

$$T_n = \frac{Q_o T_w p_r}{Q_w}$$

Equation 21 (ASTM, 2013)

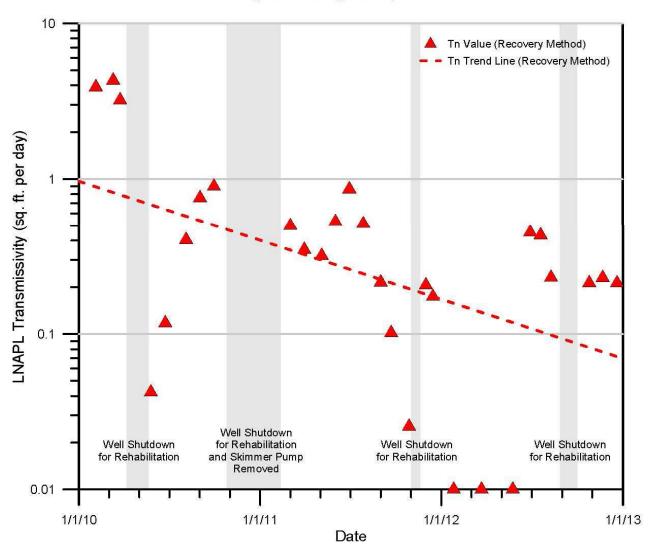
 $T_n = \text{LNAPL transmissivity (ft}^2/\text{day)}$

 $T_w = \text{Aquifer transmissivity (ft}^2/\text{day)}$


 Q_o = Measured LNAPL removal rate (ft³/day)

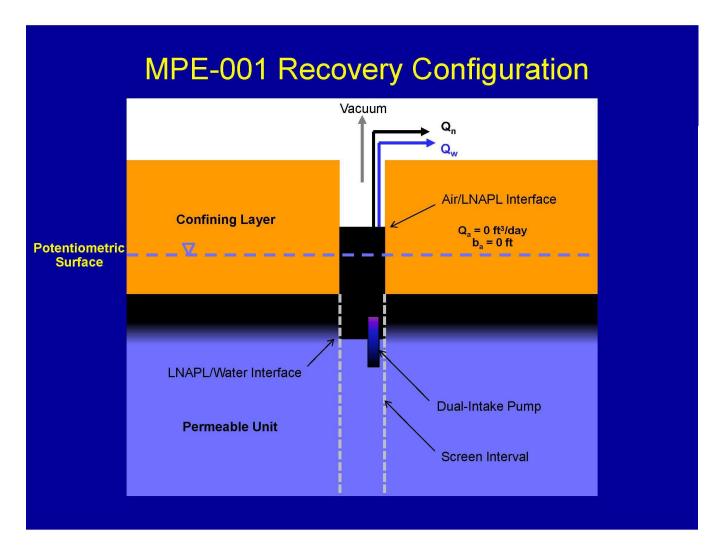
 Q_w = Measured water discharge rate (ft³/day)

 $p_r = \text{LNAPL-water density ratio}$


LNAPL Recovery and Tn at DPR-001

Note: Tn values based on an aquifer transmissivity (Tw) of 19,000 square feet per day.

Recovery-Based LNAPL Tn at DPR-001 (2010 through 2013)

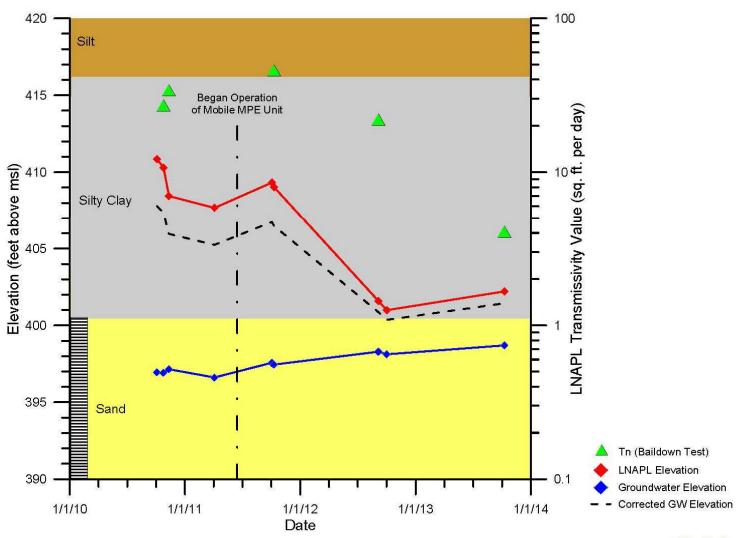


Multiple Phase Extraction (MPE) – Site Example

- Mobile Low-Flow Dual Phase Extraction System (MPE-001)
- Confined LNAPL
- 2.5 Years / ~280,600 Gallons Recovered
- Recovery-Based / Baildown Comparison Similar Trend

Well Diameter = 4 in.

Well Screened below Confining Layer (L = ~11 feet)


Average Well Head Vacuum = 116 in. W.C.

 $Q_w = 7 \text{ to } 8 \text{ GPM}$

 $Q_n = ~2,000 \text{ to } 230 \text{ GPD}$

Fluid Elevations and Tn Values at MPE-001

Water and Vacuum-Enhanced LNAPL Recovery Data Analysis

- LNAPL in Formation is Confined
- Assumptions:
 - Fluid Levels at Equilibrium
 - No Air Discharge From Vadose Zone or Formation $(Q_a = 0 \text{ ft}^3/\text{day})$
 - No Open Well Screen Above LNAPL Level (b_a = 0 feet)
 - LNAPL Tn Calculated Based on Fluid Recovery Ratios
 - Utilized Water Enhanced Recovery Method of Calculating LNAPL Tn

 $T_n = \text{LNAPL transmissivity (ft}^2/\text{day)}$

 $T_w = \text{Aquifer transmissivity (ft}^2/\text{day)}$

K_w = Aquifer conductivity (ft/day)

L = Wetted interval along well screen (ft)

 Q_n = Measured LNAPL removal rate (ft³/day)

 Q_w = Measured water discharge rate (ft³/day)

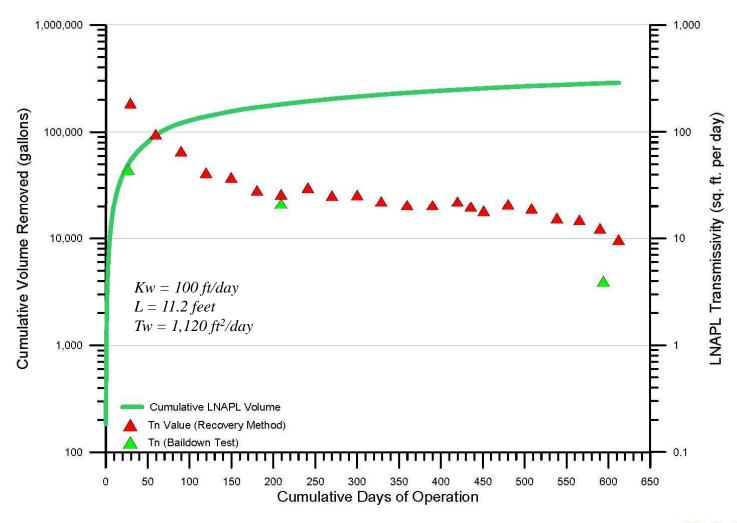
 $p_r = \text{LNAPL-water density ratio}$

 $k_{ra} = Air-phase permeability$

 μ_{ar} = Air-water viscosity ratio

$$T_n = \frac{Q_n p_r}{\frac{p_{tr} Q_a}{k_r K_t b_a} + \frac{Q_w}{T_w}}$$

Equation 23 (ASTM, 2013)



$$T_n = (Q_n/Q_w) T_w p_r$$

where,
$$T_w = K_w L$$
 (Hawthorne, 2013)

Cumulative LNAPL Removal and Tn at MPE-001

Summary

- LNAPL Transmissivity is a Useful Metric for Evaluating the Performance of a Variety of Hydraulic Recovery Systems
- Provides Another Line of Evidence for Determining When Endpoints or Decision Points are Reached ("...to the extent practicable.")
- Recent ASTM and API Guidance Provides Consistent Procedures for Collecting Data, and Calculating and Analyzing LNAPL Tn Values
- Periodic Baildown Testing Should be Performed to Confirm Recovery-Based LNAPL Tn Trends
- Consistent Operation and Maintenance of Recovery Systems and Wells is Critical for Improving Accuracy of Recovery-Based LNAPL Tn Data

Thank You! Any Questions?

