

IPEC 2013
San Antonio, Texas

Presented by : James R Dickson, P.E. CTI and Associates, Inc.

Use of Innovative Soil Vapor Extraction System for Delineation and Remediation of Vadous Zone Impacted with Chlorinated Hydrocarbons

The SITE: A third party operated Manufacturing Facility

Site Characteristics

- 5-10 feet of Clay beneath concrete slab
- 125+ feet of Sand and siltly-sand below the clay becoming finer with depth
- 40 feet to the water table
- 30-35 foot vadous zone

Concept

- Install a flexible Soil Vapor Extraction (SVE) system to:
 - Characterize soils
 - Remediate Soils
 - In less time for less money!
- System
 - Must be able to run individual or banks of wells to maximize removal.
 - It must be expandable in case estimated radius of influence is too small.
 - Adjustable remotely due to site being in remote location.
 - Compare to characterization to traditional methods.
 - Eliminate the need for full characterization and design.
- Can be used to recover off gas from GW Sparge if pursued for GW Remediation.

Initial Concept

Reduced Phase 1 Installation SVE Well Estimated ROI Range

Traditional Characterization Performed

- As a part of the SVE and Monitoring point well installation
 - Soil Samples were collected
 - Water Samples were collected

Traditional Investigation and SVE well and Monitoring Point locations

Soil Samples (Total Chlorinated Hydrocarbons)

Groundwater Samples

(Total Chlorinated Hydrocarbons)

Characterization

- Based on the groundwater (GW) concentrations from installation
 - the Henry's constant was used to calculated the steady state concentrations of vapors as a result of impacted GW.
 - 131.5 mg/m3 Vapor Concentration

SVE Well Estimated ROI Range

System Design

- Oversized manifold piping balances flow when multiple wells are run at the same time. (Negligible Losses)
- Running individual compressed air hose from system to each pneumatic valve.
 - Allows for individual and bank well operation
 - Hose can be run by mechanical contractor installing the manifold piping.
- The vacuum blower operated by a variable frequency drive (VFD).
 - Allows for individual well testing and multiple well zones (banks)
 - Allows for step testing of individual wells locally and remotely
 - PLC operation provides modular flexibility.

System Design (cont.)

- System installed in 8x10 ft. shipping container.
 - Was built off-site and hauled to site for easy installation
 - The system can be used again at new site to provide additional value to the client.
- Based on site conditions utilized a 5 HP Regenerative blower.
 - Flexible operations with low maintenance requirements
- Knock-out tank with progressive cavity pump to evaporator tank.
- Evaporator tank utilizes a fan and a small recirculation pump with swamp matting to evaporate accumulated water.

System Design (cont.)

- Equipped with 16 self venting solenoid valves with air hose quick connect fittings for valve actuation.
- Small compressor with air dryer and auto drain to evaporator tank feeds dry air to the solenoid valves.
- Self Averaging Pitot tube with vacuum, velocity head and process temperature sensors.
 - PLC calculates and displays air flow in SCFM.
- Heating and cooling provided by small heater and exhaust fan with door louvers.

Construction

- All construction took place on 3rd Shift
 - To not interfere with Plant Operations
 - Wells and Monitoring Points Installed out of Isles and production areas to minimize impacts.
 - Work performed in winter months inside plant

Location of the 8-inch Manifold Piping and System

SVE System

SVE Well and Monitoring Points

- Screened from 25-35 below ground surface
- Screen stops 5 feet above the water table
- 2-inch PVC screen and casing
- •10-slot PVC screen and sand packs
- Monitoring points identical to SVE well and can be piped to the manifold if needed.

Sub-Slab Vents (contingent item)

- •1-1/5 foot long 2-inch 10 slot screen embedded in gravel.
- Installed in pipe run trench to SVE well head.

Typical Completion and Riser Details

CROSS SECTION VIEWS

(1) SVE Well Connection

(2) Sub-Slab Connection

Sub Slab screen Is embedded in peagravel

Pneumatically actuated valve (Air open spring return)

PLC Totalizer and Alarm Screen

Automatic PLC Screen

PLC Parameter and Setting Screens (Zone Duration)

Parameter and Setting Screens (Zone Solenoid Selection and Blower Speed Set Points)

Webcam Tank Monitoring

Initial Testing

- Upon Startup, gas samples were collected from each well head tested and analyzed by on-site gas chromatograph every 10-15 minutes.
 - Gas samples collected at the well riser pipe by syringe via a septa.
 - Vacuum and flow data were collected at each well head.
- Vacuum was measured at adjacent monitoring points and wells to determine actual radius of influence. (100 feet was observed)
- Upon completion of initial testing split samples were collected and sent to the laboratory for T-015 analysis.
- Based on Individual GC data the initial banks (zones) were configured to maximize removal while remaining below the maximum allowable discharge under the SVE exemption.

Typical Monitoring Point (Vacuum Testing)

Pitot tube and vacuum, velocity head and temperature measurements

Field Gas Chromatograph (Initial Testing)

Field GC Sample collection by syringe

September 2011 (Initial Testing) (>132 mg/m3 Soil Contamination)

Chart of System Performance

TCE and TVOC Removal by SVE System

September 2013 (Last Characterization Event)

Conclusions

- Traditional Methods
 - Soil Sampling- Only 1 hit detected out of 12 samples
 - GW Sampling Significant groundwater impacts observed
- SVE Characterization/Treatment
 - GW contribution to Vapor Results calculated.
 - Characterization with SVE resulted in ¾ of the area with impacted soils within well ROI (>131.5 mg/m3) all but 2 wells.
 - All discernable soil impacts removed within 3 months.
 - No further impacts to GW from source soils.
 - GW being further treated by SVE from Volatilization
 - Could be enhanced by Air Sparge

Resulted in Streamlined Characterization and Cleanup within a 2 year window at reduced cost. (Site is RAP ready with SVE as a contingency)

Questions

• Thanks for your attention!