PRESENTATION AND DISCUSSION LED BY:
GLEN VALLANCE PROJECT MANAGER, CGRS

1. IN-SITU THERMAL REMEDIATION
2. CASE STUDY APPLICATION
3. DESIGN & CONSTRUCTION OF ISTR PROJECT IN COLORADO
EXAMPLE SOURCE ZONE
ISTD / TCH → HEATING GOVERNED BY THERMAL CONDUCTIVITY (F~3) NEARLY UNIFORM
ISTD / TCH → Ability to go above the boiling point of water
ISTD / TCH
LARGE, COMPLEX APPLICATIONS
ISTD / TCH

BENEATH A HIGH RISE APARTMENT BUILDING
How It Works

Closed-loop in-situ thermal conduction heating system;

Co-located vapor extraction and heating wells;

Treatment temperatures from \(~100^\circ C\) to \(>400^\circ C\);

Some off-gases may be used as supplemental fuel (PAHs and BTEXs), others treated with C3 Technology.
How it works: GTR© (Gas-Thermal-Remediation)

Above animation is of GTR+F (+fuel) installation; Chlorinated applications use separate SVE/DPE wells and/or trenches.
Gasoline: In Situ Thermal Remediation at a Former Service Station Using GTR+F

Summary: A former petrol station in a predominantly residential neighborhood was closed for a major petrol marketing company. Two former 5,000 gallon USTs were excavated and removed. The soil and groundwater beneath the USTs was still heavily impacted by BTEX contaminants. Excavation near surrounding homes was not desired. The client elected to treat the groundwater and soil onsite using in situ thermal treatment (as opposed to chemical oxidation or bio-treatment). TPS TECH exceeded all remedial and scheduling goals.
Gasoline: In Situ Thermal Remediation at a Former Service Station Using GTR+F

Contaminants: Benzene (TPH-g)
Maximum Concentration: > 30,000 mg/kg (LNAPL)
Remediation Goal: > 90% removal of BTEX compounds
Treatment Volume: 2,750 cubic yards
Hydrogeology: Silty sand and gravel; vadose and shallow groundwater

Heating Wells: 39
Target Temperature: 100°C (120 hours)
Project Duration: 50 days
Confirmation Sampling: > 95% RE
Drivers for In Situ Thermal Remediation

Alternatives: Excavation and offsite disposal; In situ bio; Soil vapor extraction plus air sparging

Regulators: Originally favored excavation

Residents: Preferred in situ cleanup (no trucks, no dust)

PRP: Cost and “no further action” were main drivers

Certainty: Negotiated residential goals for soils and site; redevelopment in negotiation
Energy Sources for In Situ Thermal Remediation

Energy Sources: Natural Gas and Volatized BTEX (off-gas)

Energy to Subsurface: Average of 124 kWh per ton of soil treated

Energy Balance: Natural Gas accounted for 84% of utility consumption; remaining energy balance was electricity required for vapour extraction and controls
Loveland Sinclair Station
Retail fueling station since 1972
Loveland Sinclair Station - Soil Impacts

The inferred extent of the benzene plume in soil exceeding the Tier-1 RBSL for the groundwater exposure pathway covers an area of approximately 12,000 ft².

Benzene and TPH-G impacts detected in soil at concentrations up to 6.68 mg/Kg and 5,058 mg/Kg, respectively.

Soil impacts exist primarily between 8 feet to a depth of approximately 14 feet bgs.
Loveland Sinclair Station – Groundwater Impacts

The inferred extent of the benzene plume in groundwater exceeding the Tier-1 RBSL for the groundwater exposure pathway covers an area of approximately 24,000 ft².

Average groundwater table elevation is approximately 10 feet bgs.

BTEX concentrations have increased, and free-product has been detected in wells SB-9 & SB-12 at a thickness up to 0.8 feet.
Conventional Remediation Methods & Bio Augmentation

Pilot test data, combined with low permeability of clay soil, and expansive plume size rule out feasibility of soil vapor extraction and air sparge remediation methods

MNA data suggest conditions along the leading edge of the plume may be conducive to natural attenuation.

In-plume conditions are anaerobic, and electron receptors such as nitrate and sulfate appear to have been depleted.

Soil lithology (clay) and large plume area present limitations to bio-augmentation and/or chemical oxidation injection methods.
Dig and Haul / Chemical Oxygen Enhancement / Bio Sparge

Initial Corrective Action proposed excavating impacted soil exceeding Tier-1 RBSLs within an area ~9,490 ft² in order to remove the most elevated hydrocarbon sources in the soil.

After excavation application of chemical oxygen enhancement amendments and installation of a bio sparge remediation.
In-Situ Thermal Remediation

ISTR targets a treatment area of 14,065 ft2 and includes a total treatment volume of 3,126 yds3.

The target treatment temperature required to remediate soil and groundwater to Tier-1 RBSLs is 100$^\circ$C.

Estimated time to reach TTT is 76 days, time TTT is 7 days, cool down period of 17 days – total project time of 100 days.
System design includes 140 Thermal Conductive Heating (TCH) wells to supply heat to 14 feet bgs. 70 wells are GTR + F™ re-heat wells. 140 co-located and 60 dedicated SVE wells. 16 temperature and pressure monitoring points.

Estimated **natural gas** requirement - 7.2E6 ft³

Estimated **electrical** requirement – 1.5E5 kWh
Loveland Sinclair Station: In-Situ Thermal Remediation

- Subsurface water utilities limit a portion of the treatment area to both excavation and ISTR, however ISTR increases the area of treatment in the vicinity of the water lines.
- Plan includes a treatment area in excess of 14,000 ft² (33% larger area than excavation)
- No supplemental remediation anticipated within the treatment area after thermal remediation is completed.
- ISTR project completed within 100 days from system start-up (4 times faster than excavation/bio-augmentation)
Contact Information

Technical Information & Case Studies Available at: www.tpsotech.com

Glen Vallance Glen@cgrs.com

800-288-2657