

Remedial Screening of Horizontal Injection Wells and Vertical Injection Wells for In-Situ Chemical Oxidation (ISCO) of Petroleum Hydrocarbons

> IPEC Conference San Antonio, TX November 13, 2013 *Glenn Nicholas Iosue*

Presentation Overview

Chemical Oxidation

- What is it?
- What are reactions?
- What type of equipment is needed?
- Performing Effective Injections
 - What are concerns?
 - How are concerns mitigated?
- Case Studies

Experience with ISCO

California, Connecticut, Delaware, Georgia, Florida, Illinois, Louisiana, Maryland, Michigan, Mississippi, New York, New Jersey, Ohio, Pennsylvania, Texas, Virginia and West Virginia

Example: Remedial Alternatives

• Multi-Phase Extraction Events

- did not effectively remove contaminant mass

Natural Attenuation

- not feasible, concentrations too high

• Excavate Soil

- limited space, proximity to buildings, potential soil exposure

• In-Situ (or in place) Chemical Oxidation (ISCO)

Pilot Test approved by regulatory agency

In-Situ Chemical Oxidation

ISCO is where oxidants are introduced into subsurface to chemically oxidize contaminants into harmless substances. Some oxidants include:

- Permanganate (MnO₄)
- Fenton's (hydrogen peroxide [H₂O₂] and Ferrous iron [Fe⁺²]) or catalyzed hydrogen peroxide (CHP)
- Ozone (O_3)
- Persulfate (S₂O₈²⁻)

Oxidants + Petroleum Compounds (carbon) \rightarrow CO₂ + H₂O

Note: Once oxidants are injected via injections wells, monitoring surrounding wells will gauge effectiveness

Will it work on my site?

Chemical Oxidation Chemistry

1. Hydrogen peroxide will react with iron to form hydroxyl radicals:

 $H_2O_2 + C \rightarrow \bullet OH + OH^- + C^+$

C = Iron or Metal Catalyst; OH = Hydroxyl Radicals

2. Hydrogen peroxide will react with persulfate to form sulfate radicals and hydroxyl radicals:

 $S_2O_8^{2-} + H_2O_2 \rightarrow 2SO_4 + 2(\bullet OH)$

3. Hydrogen peroxide will react with ozone to form hydroxyl radicals: $2O_3 + H_2O_2 \rightarrow 2(\bullet OH) + 3O_2$

Note: Addition of persulfate can lower local pH, which will enhance first and second chemical reactions above.

Oxidation Potential

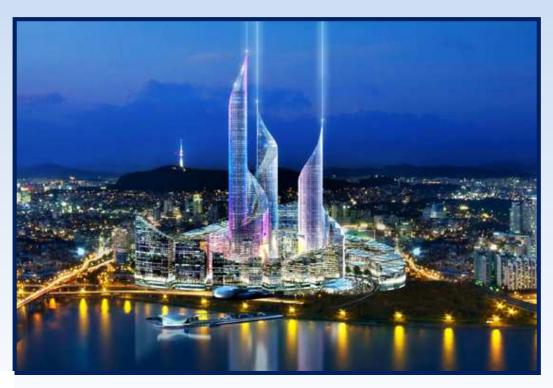
Oxidizing Species	Oxidation Potential (Volts)	Relative Oxidation Power (Chlorine as reference)
Hydroxyl Radical	2.80	2.05
Activated Persulfate	2.60	1.88
Ozone	2.07	1.52
Persulfate	2.01	1.46
Hydrogen Peroxide	1.77	1.30
Perhydroxyl Radical	1.70	1.25
Permanganate	1.69	1.24
Chlorine	1.38	1.00
Oxygen	1.20	0.90

Ref: Solvey Interox., Hydrogen Peroxide, Fenton's Reagent, 6/93

- Typical highway utility crossing
 - Traffic was not disrupted

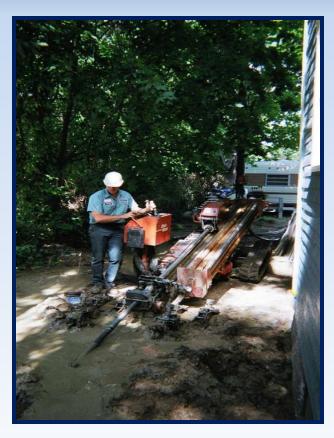
• Access inside this government facility was denied

• Traditional vertical equipment could not fit in tight spacing



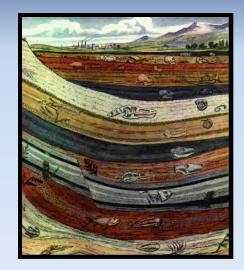
- Typical utility installation
 - Traffic was allowed to continue
 - Pristine urban
 revitalization was
 preserved

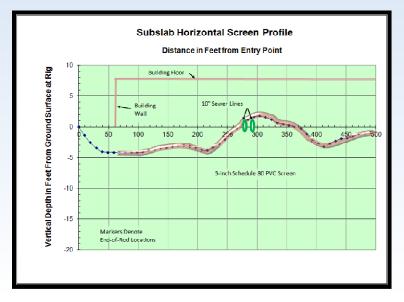
Fast track environmental project required mandatory cleanup \$40 Billion project in South Korea



Site constraints – wells had to terminate within property boundaries

- Social Impacts
- Tight Set-Up Areas


Horizontal vs. Vertical

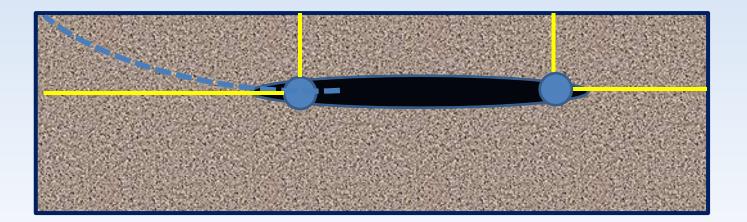

- HRWs can run parallel or perpendicular to the plume
- HRWs can run through the plume, under the plume or over the plume
- HRW can curve to follow the plumes path
- HRWs can get right to the source
- Smear Zone
- HRWs can use a variety of well materials

Ground Conditions

- Have to think linear not point to point
- What can happen bgs over 450' or 1,000' of well screen
- Change in the geology
- Be prepared for a change in the geology with horizontal drilling and well placement
- Obstacles left, right, up, down
- Change in the groundwater table

Site Conditions/Restraints HRW vs Vertical Wells

- Wire line locating technology can be used if access to the building is not possible
- Small compact directional drilling rigs can accommodate sites with low ceiling clearance
- HRWs can be installed from discrete locations so that commercial activities can continue
- Minimum site restoration is required
- Fewer if any conveyance lines are needed


Site Conditions/Restraints HRW vs Vertical Wells

Horizontal Remediation Well requirements

- 5:1 ratio to achieve depth
 - Can overcome this with design modifications
- Entry/Exit well or blind well
- No room for exit point will require blind well

Blind Well

Case Study

- Release history multiple UST releases
- Remediation history mass excavation, but significant impacted material left
- Recontamination of site from residuals

Selecting the Remedy

Feasibility Study Assessed:

- Excavation
 - Cost prohibitive business interruption losses alone would exceed \$10K per day
 - No guarantee of achieving NFA

Selecting the Remedy

• Feasibility Study Assessed:

- Proven technology
- Suitable for site's subsurface conditions
- Business interruptions reduced to loss of one dispenser island during vertical system installation
- Decision: select AS/SVE

Vertical AS/SVE System Conceptual Layout

- 10 vertical wells with sufficient ZOI overlap to cover the entire impacted area
- Projected time to NFA: 3-5 years

Vertical AS/SVE System Costs

- Well installation: \$300K approximately half (\$150K) for softdig trenching for interconnecting piping
- Treatment system: \$100K
- 5 years O & M @ \$40K/yr.: \$200K
- Total estimated project life cycle costs: \$600K
- Estimated lost business revenue due to dispenser island shutdown: \$7.5K/day X 15 days = \$112.5K

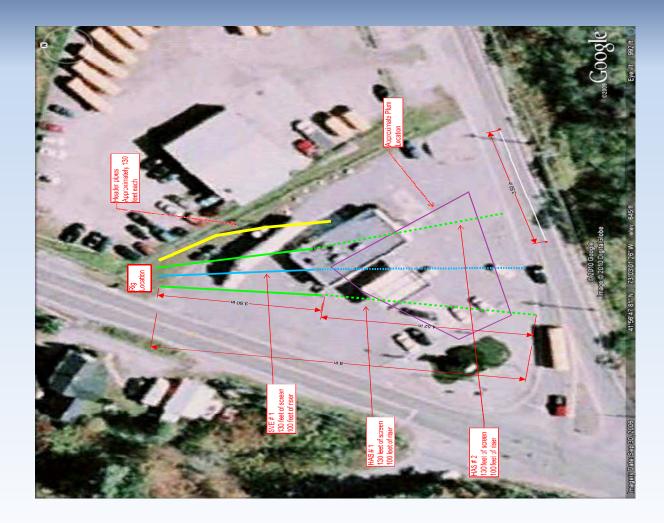
Cost Assessment

- Client's lost business revenue due to dispenser island shut-down of approximately \$112.5K was intolerable
- Cannot justify a \$150K expenditure for soft-dig trenching for interconnecting piping

Technology Reassessment

- How to implement a remedy without shutting down the business?
- Solution: <u>Horizontal</u>
 <u>Remediation Wells</u>

Horizontal Remediation Well Conceptual Design


3 Horizontal Remediation Wells

- 2 HRWs along north and south flanks of plume – overall length 175 ft.; screen length 135 ft.
- 1 HRW well between the 2 HRWs wells along plume centerline – overall length 175 ft.; screen length 135 ft.
- 3" diameter Sch. 40 PVC
- Blind completions

Site Design

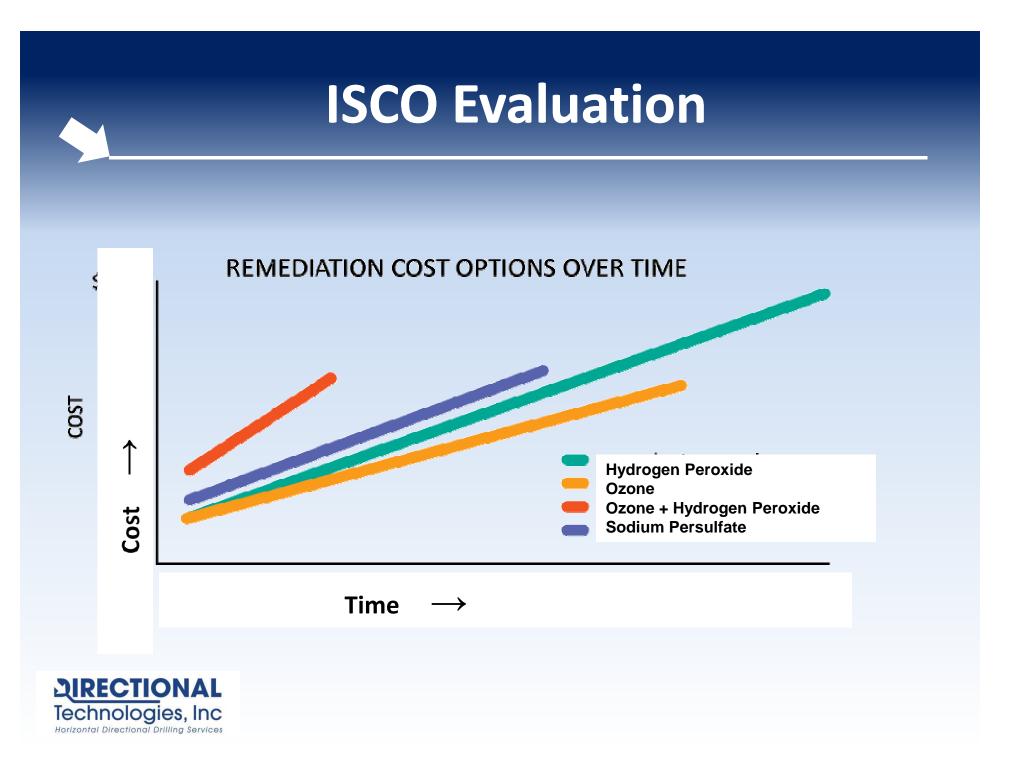
Horizontal Remediation Well Estimated Installation Cost

 \$150K, including well screen design, materials, mob/demob, well installation, well development

Horizontal AS/SVE System Costs

- Well installation: \$150K
- Treatment system: \$100K
- 1 year O & M @ \$40K/yr.: \$40K
- Total project life cycle costs: approx. \$290K
- Avoided costs:
 - \$150K soft-dig trenching
 - \$160K O & M (4 years)
- Total savings: approx. \$210K
- Avoided business loss: \$112.5K

Cost Summary


	Horizontal Wells	Vertical Wells
Well Installation	150,000	300,000 includes trenching
Treatment	100,000	100,000
O & M : 1 st year	40,000	40,000
2 nd year	0	40,000
3 rd year	0	40,000
4 th year	0	40,000
5 th year	0	40,000
Total estimated life cycle project costs	\$290,000	\$600,000
Interruption of business	0	\$112,500

Summary

- Avoided approximately \$290K in program costs
- Avoided at least \$100K in lost revenue for client by allowing business to continue during remedial construction
- Avoided street closures and police details
- Cleaned up site in 1 year vs. 5 years

Planning

Planning

Chemical Management Persulfate

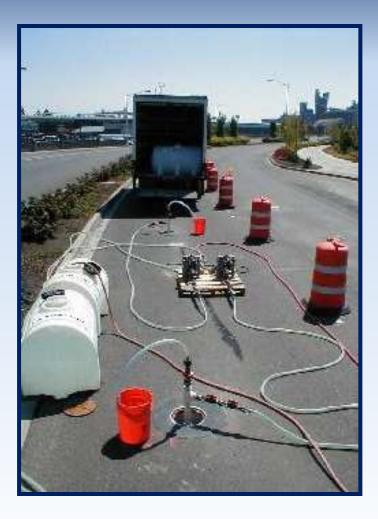
Planning

Chemical Management Tankers

Perform and Assess

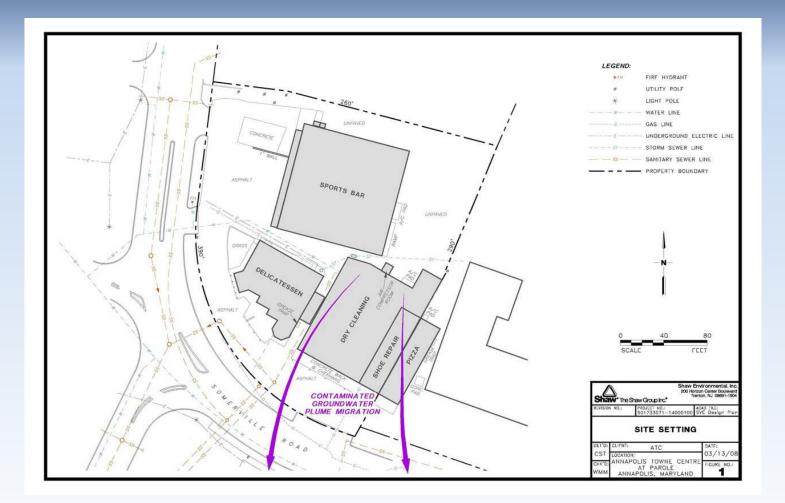
SUBSURFACE REACTIONS

Constantly monitor injection process


• Volume, flow and pressure of oxidants

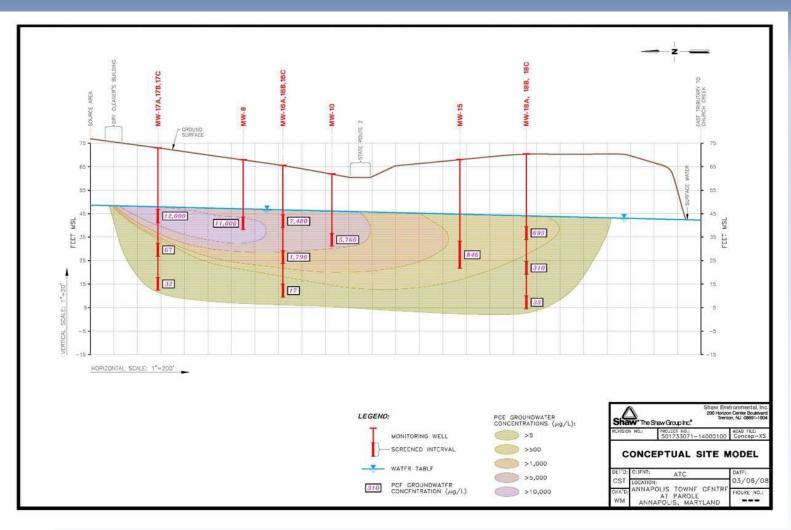
Constantly monitor subsurface effects

- Groundwater levels, pH, temperature, ORP, DO and oxidant concentrations
- PID, % LEL and % O_2

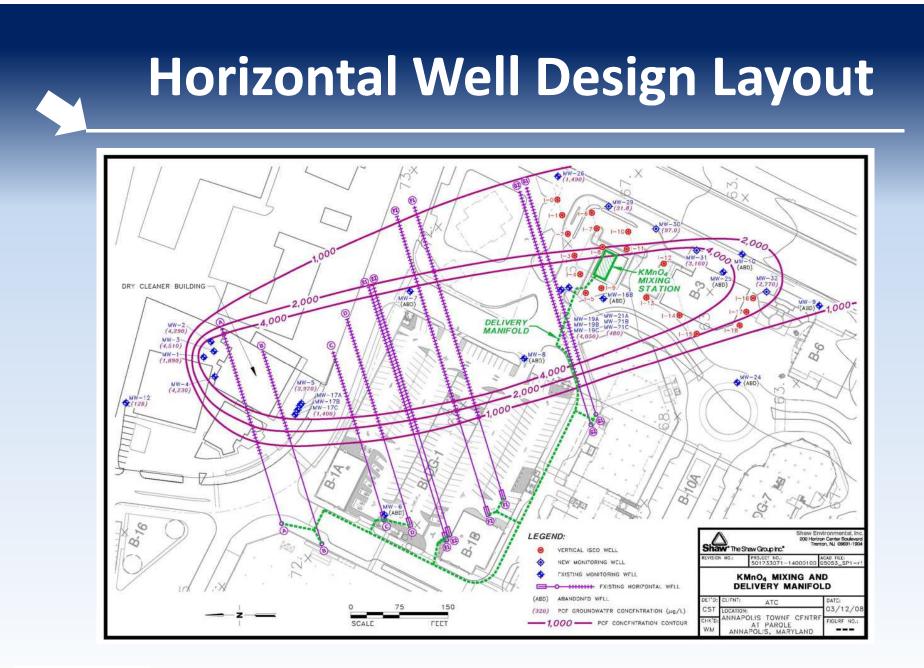

During injections, vacuum applied to well closest to injection point

- Recovers any potential vapors, if any
- Vapors treated via carbon, as necessary

Case Study: HRW Injection



Conceptual Model

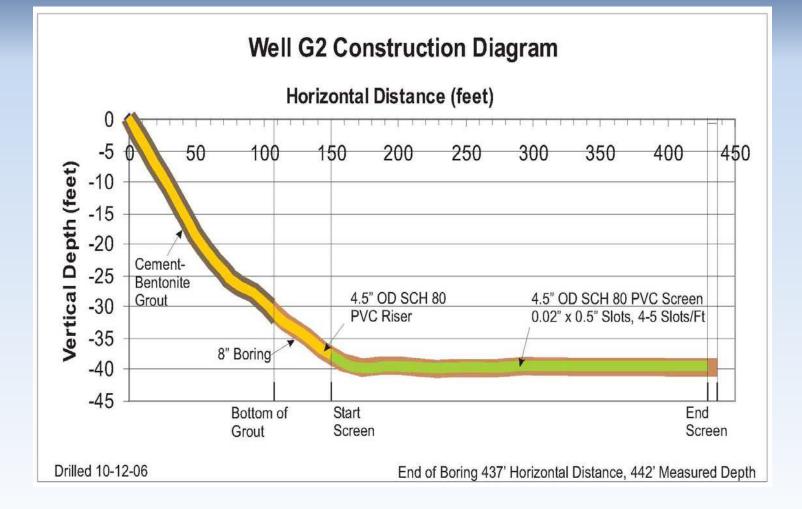

- Site Soils: Silty Sand to 65 feet
- Groundwater Flow Rate: 0.2 to 0.4 fpd
- Low Soil Oxidant Demand: 1.5 to 2.0 g/kg
- Contaminated Groundwater Zone: ≈25 to 55 feet bgs

Plume Cross-Section

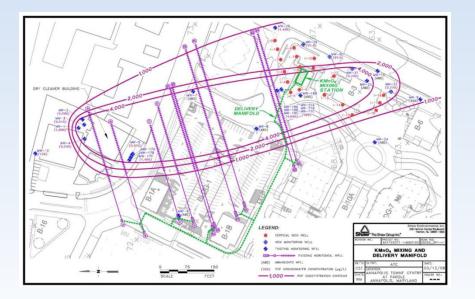
DIRECTIONAL Technologies, Inc

Horizontal Screen Design

- Modeling to achieve uniform distribution of oxidant through length of well screen
- 3D finite difference flow and transport model to design screen pattern
- MODFLOW
- Design specifies percent open area of well screen to generate uniform distribution


Horizontal Screen Design

- Model simulates injection fluid moving down the well, through screen slots, and into and through formation
- Open area requirements for well screens ranged from 0.0357 to 0.0429 percent open area
- Required number of slots were calculated for each length of screen at slot width of 0.02-inch


Horizontal Screen Design

Horizontal Well Installation

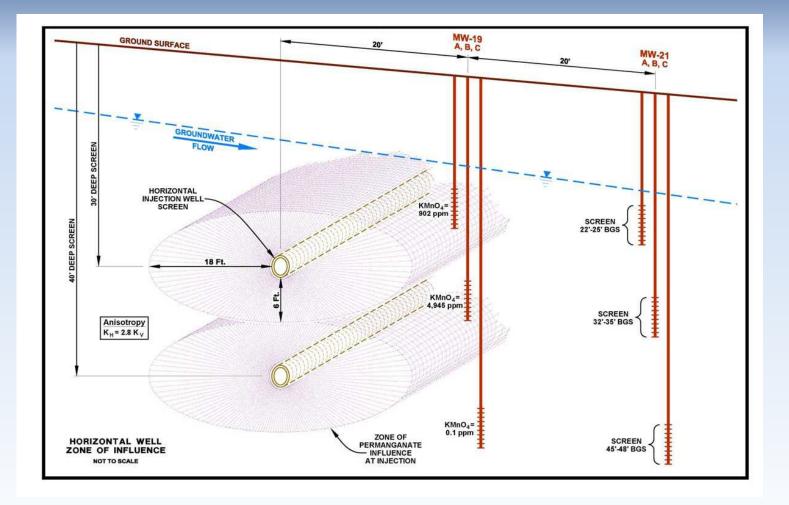
- Design: 7 rows of Horizontal Remediation Wells
- Some rows used two wells at various depths (≈30 and 40 feet bgs)
- Installation completed in 35 days (3,870 feet of drilling)

Horizontal Well Installation

ISCO 1st Injection Event

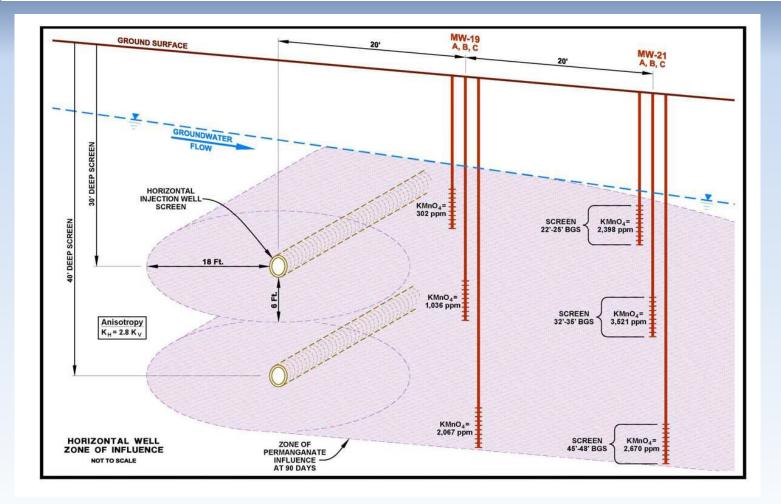
- Injection into 10 Horizontal Wells (total of 2,330 feet of screen)
- Flow Rate: 11.7 GPM per well (average)
- Batch Process: 10,000 Gallons per Batch
- Injection Time: 85 Minutes per Batch
- ISCO 1st Injection Event: 340,000 gallons

Oxidant Mixing Station



ISCO 2nd Injection Event

- ISCO 2nd Injection Event: 1,032,333 gallons
- Average Injection Rate: 38,235 gallons per 10-Hour Shift
- Maximum Injection Rate: 55,000 gallons in 10-Hour Shift
- 81 Tons of Oxidant Chemicals Injected in 26 Days



Oxidant Distribution at Initiation of Injection

Oxidant Distribution at 90 Days After Injection

DIRECTIONAL Technologies, Inc

Concentration Reductions

- Source Area MWs
 Pre-Treatment Concentrations: as high as 13,000 ppb
 Post-Treatment Concentrations: from ND to 400 ppb
- Downgradient MWs
 Pre-Treatment Concentrations: as high as 8,000 ppb
 Post-Treatment Concentrations: from ND to 1,840 ppb

Summary of Advantages: Horizontal Remediation Wells

- Length of screen allows for higher volume injections

 faster, less costly injection process
- Reduces effect of oxidant clogging
- Allow injections in areas where streets, utilities and buildings interfere with vertical wells
- HRWs are typically more effective than vertical wells
- HRWs are flexible technology that allows for many possible designs, applications and combinations
- Traditional vertical remedies can be transferred to HRWs

DIRECTIONAL Technologies, Inc. Horizontal Directional Drilling Services

Horizontal Remediation Technologies • Installation • Design • Engineered Well Screens • Services

Questions?

Founded in 1992, Directional Technologies, Inc. has installed over 1,000 horizontal remediation wells thru out the world.

Corporate Headquarters in Wallingford, CT Branches offices in Philadelphia, PA; Ashby, MA; Tallahassee, FL

IPEC Conference 2013 | San Antonio, TX www.directionaltech.com | giosue@directionaltech.com