Recent Developments Related to the Health Effects of Diesel Exhaust (DE): Implications for Hydraulic Fracturing and Oil & Gas Development

> Christopher M. Long, Sc.D., DABT Peter A. Valberg, Ph.D. Gradient

> > November 12, 2013

Agenda

- Introduction
 - DE at oil & gas development sites
 - Background on DE composition
 - Key terminology: NTDE vs. TDE
- June 2012 DE re-assessment by IARC (International Agency for Research on Cancer)
- Emergence of New Technology Diesel Exhaust (NTDE)
 - Emissions characterization
 - Toxicological testing
- Additional issues to follow

DE at Oil & Gas Development Sites

- Numerous sources
 - Trucks, compressors, pumps, generators, drill rigs, etc.
 - 2012 estimate of 700 million gallons of diesel fuel burned domestically at HF sites
- Source of public and regulator concerns
 - Direct DE impacts
 - 2012 US GAO report highlights DE as source of air quality impacts at oil & gas sites
 - Indirect DE impacts
 - Contributor to ozone formation

Examples of DE Claims by Public Interest Groups

Diesel Exhaust (DE) Constituents

- Complex mixture consisting of:
 - CO_2 and H_2O
 - Diesel exhaust particulates (DEP)
 - Nitrogen oxides (NOx)
 - Sulfur dioxide (SO₂)
 - Hydrocarbons
 - Air toxics
 - Formaldehyde
 - Acetaldehyde
 - 1,3-Butadiene
 - Acrolein
 - Benzene
 - Polycyclic Aromatic Hydrocarbons (PAHs)
- Elemental carbon often used as DEP surrogate

Key Terminology

- Traditional Diesel Exhaust (TDE)
 - Pre-1988 diesel engine technology in place prior to US EPA diesel particulate matter (PM) standards
 - Can have high emissions
- New Technology Diesel Exhaust (NTDE)
 - Post-2006 "clean diesel" engine technology that includes multicomponent after-treatment systems
 - Significant emissions reductions for PM, air toxics, NOx (post-2010)

Required for use in all highway diesel vehicles and engines.

Recommended for use in all diesel vehicles and engines.

2012 IARC Re-assessment

International Agency for Research on Cancer

- June 2012 meeting in Lyon, France
 - Update to 1988 assessment
 - Panel also re-evaluated gasoline engine exhaust (and some nitroarene species)
- DE upgraded from a Group 2A probable human carcinogen to a Group 1 known human carcinogen
 - Driven by new epi findings indicating lung cancer risk for TDEexposed worker cohorts (non-metal miners, truckers)
 - Classification makes no distinction between TDE and NTDE
- No change in gasoline engine exhaust classification of Group 2B possible human carcinogen

Statements in the Media Regarding DE as a Group 1 Carcinogen

```
Diesel exhaust fumes 'definitely'
cause cancer – should we be
worried?
```

Diesel exhaust fumes cause cancer, WHO says

IARC Cancer Classifications		
Group 1	Carcinogenic to humans	112 agents
Group 2A	Probably carcinogenic to humans	66 agents
Group 2B	Possibly carcinogenic to humans	285 agents
Group 3	Not classifiable as to its carcinogenicity to humans	505 agents
Group 4	Probably not carcinogenic to humans	1 agent

Diesel exhaust fumes are 'major cancer risk' and as deadly as asbestos and mustard gas, says World Health Organisation

NIOSH-NCI Diesel Exhaust in Miners Study (DEMS)

- Major study- ~20 years to conduct, >12,000 workers, >275,000 person-years of follow-up, ~200 lung cancers, 7 journal publications, >400 statistical comparisons
- Study reported some of strongest evidence to date linking elevated DE exposures with lung cancer risk, including evidence of exposure-response trends
 - 3- to 7-fold elevations in risks for heavily-exposed workers
- Some important study limitations
 - Uncertainty in the exposure assessment; calls for re-analysis
 - Specific to older diesel engine technologies
- Can results be extrapolated to other DE-exposed populations differing in exposure levels and DE sources?

Large Uncertainty of DEMS Findings to DE at Oil & Gas Development Sites

Exposed Population	Average Elemental Carbon (EC) Exposure Conc. (μg/m ³)	
DEMS Underground Mine Production Workers	Estimated historical exposures of up to 600 μg/m ³	
DEMS Surface Mine Workers	Estimated historical exposures of up to $11 \mu g/m^3$	
Fracking Site Workers	???	
Residents Nearby to Fracking Sites	???	

Preliminary Evidence of Minor DE-Related Air Quality Impacts in Barnett Shale Region (DRI, 2010)

- Short-term air sampling study at multiple locations in Shale Creek Community (TX)
 - Large diesel-powered compressor station
 - Several production wells in surrounding area

28 day mean concentration

Large Uncertainty of DEMS Findings to DE at Oil & Gas Development Sites (cont.)

 Major changes to DE with evolution of diesel emissions standards and engine technology

Large Uncertainty of DEMS Findings to DE at Oil & Gas Development Sites (cont.)

Obtained from John Wall, Cummins

Reduced <u>and</u> **Changed PM Emissions**

From Hesterberg, Long, et al. (2012)

How Does NTDE Compare to Other Engine Exhaust Types?

From Hesterberg, Long, et al. (2011)

Does NTDE Have Reduced Toxicity?

- No epi studies of NTDEexposed worker cohorts
- But, preliminary animal data support reduced toxicity- *e.g.*, McDonald *et al.* (2004)
- As does one human clinical study of biomarkers of cardiovascular health- *e.g.*, Lucking *et al.* (2011)
- But is it carcinogenic?

McDonald *et al.* (2004) mouse acute toxicity findings

Advanced Collaborative Emissions Study (ACES)

Lovelace

- \$20 million study initiated in 2006
- Includes large chronic rat carcinogenicity bioassay
 - Inhalation exposures 16 hr/day, 5 days/wk for 24-30 months
 - 3 dilutions of NTDE + clean air controls
- Exposures now complete, final report expected early 2014
- Preliminary findings available for small number of rats sacrificed for 24-month interim evaluation
 - No treatment-related lung lesions in low or mid dose groups
 - Some minimal to mild lung lesions in high dose group, but none that resemble typical preneoplastic lesions

Closing Thoughts

Many developing issues to closely follow, including:

- Release of full IARC report
 - What, if anything, will it do to distinguish NTDE from TDE?
- Final ACES carcinogenicity report for NTDE
 - Will the 24-month preliminary findings hold up?
- Health Effects Institute (HEI) Diesel Epidemiology Project
 - 10/24/13 workshop postponed due to government shutdown
- NIOSH to investigate health risks at drilling sites; specifically mention impacts of co-exposures to diesel emissions and silica

Closing Thoughts (cont.)

Implications for oil & gas development:

- Given its Group 1 status, DE likely to be closely scrutinized at oil & gas development sites
- Need for exposure assessment studies that measure/model DE exposure levels
 - Distinguish between TDE and NTDE
 - Distinguish DE constituents from other site-related and background emissions
 - On-site vs. community exposure levels
- Complex nature of DE health risk assessments for oil & gas development sites
 - Not all DE is the same

Any Questions? clong@gradientcorp.com

