Practical Application of LNAPL Transmissivity - Case Study

Presented at IPEC November 12, 2013

Petroleum Above Ground Storage Tank Fields

Site Geology

North

2 to 6 ft of coarse fill with Slag & debris

Water table at 2 to 8 ft bgs With seasonal fluctuations

22 to 30 ft of medium to fine dune sand with occasional coarse sand & gravel stringers – unit grades downward to a fine silty sand

70 ft of laucustrine clay & Glacial till

Site Background

Site Hydrogeology

- Groundwater Table 0 to 16 feet bgs
- Flow Direction –Northwest
- Gradient 0.006 feet/foot
- Light Nonaqueous Phase Liquid (LNAPL)
 - Present in 54 of 131 existing monitoring wells
 - Apparent thickness ranges from 0.01 to 6.08 feet

URS

Interim Remediation Systems

Three Well Point Systems with Product Skimming Hose (PSH) Wells
Final Effluent to On–Site WWTF
Vapors processed via Thermal Oxidizer

Well Point and PSH Systems

System Operations

- 407 Wellpoints
- 318 PSHs
- Flow Rate:
- 60- 220 gpm
 Oil/Water Recovery Ratio:
- 0 to Film
- **Gradient Monitoring**
- Via Monthly Transducer Data

Remediation Objectives

Agreed Order Compliance Inward Hydraulic Gradient LNAPL Containment LNAPL Recovery Risk Mitigation Current Systems Performance Optimization Appropriate Remediation Technology Selection and Optimization

Project Goals

- LNAPL Management Using a Risk-Based Approach (Modeled after ITRC)
 - LNAPL Characterization and Delineation
 - Develop Comprehensive Conceptual Site Model (CSM)
 - Develop Future Remedy to Meet Objectives
- Evaluate Interim Remediation System
 Performance
 - Determine if effective and efficient in meeting Remediation Objectives
 - Analyze LNAPL characterization data from existing PSHs and monitoring wells to target optimization efforts

LNAPL Transmissivity

Tn as driver for operations of current interim remediation system

Tn as one line of evidence for a future remedy selection via the ITRC risk based approach

LNAPL Transmissivity

- Field Testing Methods
 - Baildown Testing

URS

- Manual Skim Testing
- Oil/Water Ratio Testing

LNAPL Transmissivity Results

Remediation System Optimization

System Modifications
Gradient Monitoring
Well Point Tuning
Increase LNAPL Recovery

1:45

LNAPL Characterization

- LNAPL Source Delineation and Characterization
 - Additional boreholes/MWs to vertically and horizontally characterize the LNAPL
 - TPH Profiling

- LNAPL Saturations in Soil Cores
- Physical and Chemical LNAPL Properties
- LNAPL Natural Depletion Processes
 - CO2 Flux and Temperature Profiling
- Dissolved-Phase Groundwater Sampling

Remedy Selection Decision Document

- Use the Risk-Based ITRC Approach for LNAPL Technology Screening
 - Remedial Objective
 - Remediation Goal
 - Performance Metrics
- LNAPL Remedial Technologies
 - Multiphase Extraction
 - Bioslurping/EFR
 - Recovery Wells
 - French Drains

1:45

- Passive/Reactive Treatment Walls
- Air Sparging/Soil Vapor Extraction
- Upgrade of the Current Well Point System
- Not all technologies considered can be implemented as stand-alone options

