

Integrated Evaluation of Petroleum Impacts to Soil

Randy Adams, D. Marín, C. Avila, L. de la Cruz, C. Morales, and V. Domínguez Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico drrandocan@hotmail.com

BACKGROUND

- •Clean-up criteria for petroleum contaminated soils developed in US in 60's and 70's on drilling cuttings
- •1% considered OK no or only slight damage to crops, only lasts one growing season
- •Bioassays confirmed low toxicity of residual oil
- •Subsequenty used as a basis for clean-up criteria for hydrocarbons in soils in many countries
 - \rightarrow does not consider kind of hydrocarbons
 - \rightarrow does not consider kind of soil

SISTEMATIC EVALUATION

- •Selection of light, medium, heavy and extra-heavy crudes
- •Selection of 5 soil types common in petroleum producing region of SE Mexico
- Contamination of soil at different concentrations
 - •Measurement of acute toxicity (Microtox), and subchronic toxicity (28 d earthworm)
 - •Measurement of impacts to soil fertility: water repellency, soil moisure, compaction, complemented with *in situ* weathering experiments
 - •Measurement of plant growth: pasture, black beans

Crude Petroleum Used in Study

UJAT					
FAO:	FLUVISOL	VERTISOL	GLEYSOL	ARENOSOL	ACRISOL
USDA:	FLUVENT	VERTISOL	GLEYSOL	PSAMMENT	ULTISOL
	 rich alluvial soil 	 gilgai microrelief 	 seasonally flooded 	 coastal sandy soil 	• weathered soil from
	 medium texture 	 high clay content smectite clays: high shrink-swell capacity 	 high clay content smectite clays: high shrink-swell capacity 	 very low clay and silt content excessive internal drainage 	Pleistocene l'errace
	 good internal drainage aerobic conditions 				• sandy-clay texture
					 clays: kaolinites and oxides of Fe/Al, – no shrink swell capacity
		 poor internal drainage 	 poor internal drainage 		
	cacao, maize,	pasture,	pasture,	pasture, coconuts	pasture, pineapple,
	beans, pasture,	some maize	savannah oak (Macuilís)		citrus, sugarcane
	watermellon,				
	chiles, tomatoes	Soils	Used in	Study	

•More toxic with lighter crude and in high concentrations

•However, at 1% non-toxic in acute test

•More toxic with lighter crude and in high concentrations

•However, at 1% non-toxic in acute test

•High variability with some samples

•In general, low-null toxicity in alluvial soils

•High variability with some samples

•In general, low-null toxicity in alluvial soils

•High variability with some samples

•In general, low-null toxicity in alluvial soils

Limited toxicity with light crude, greater with medium crude
No toxicity observed in heavy crude until 4 weeks (evasion?)

•Biomass loss in first 2 weeks and then recovery (~2 mo. ?)

•Recovery much slower with heavy crude

•Limited toxicity with light crude, greater with medium crude

•Very low toxicity with heavy crude, but with extraheavy crude after 3 weeks \rightarrow formation of compacted clumps

•Biomass loss in first 2 weeks, then recovery (~3-8 weeks)

•No evidence of recovery for extraheavy crude (clumps)

•Very low mortality in alluvial soils (only 4%, in heavy crude)

Bioavailability limited by presence of silts and clays; Clays with shrink-swell capacity → no clumping

•Low-nul mortality in alluvial soils (0%, in heavy crude)

Bioavailability limited by presence of silts and clays; Clays with shrink-swell capacity → no clumping

Problems with Fertility

- •Evidence from US, Canada, SE Mexico indicate potential fertility problems, especially with weathered hydrocarbons:
 - •More weathered HC molecules act as chemical bridges between SOM and non-polar HC
 - Important in formation of hydrocarbon layers on soil particles:
 - •Water repellency, field capacity
 - Aglomeration and compaction

Model for Soil Water Repellency

FIGURE 6. Model of the interaction between natural soil organic matter (NOM) and the diagenetic products of petroleum contamination that generates water repellency. (From: Litvina *et al.* 2003)

Soil Water Repellency

Water Repellency at 10,000 ppm

crude oil	water repellency per soil type (WDPT in seconds)					
type	Fluvisol	Vertisol	Gleysol	Arenosol	Acrisol	
	(river levee)	(expansive clay)	(floodable)	(sandy)	(red clay)	
light	8.7	2.1	<1	>10⁵	<1	
medium	8.6	11.1	8.5	>10⁵	4.3	
heavy	9.3	39.4	10.2	>10⁵	>107	
extraheavy	191	NC	NC	>10⁵	NC	

NC – not calculable, very variable data.

Soil Water Repellency

 In Fluvisol and Vertisol water repellency could be modeled based on ^oAPI and TPH concentration

In situ Moisture Content

• open air weathering experiments (1 yr)

In situ moisture content after weathering (1yr)

approx. final concentration	Reduction in moisture content with respect to uncontaminated control			
crude oil type used	Arenosol (sandy)	Gleysol (floodable)	Fluvisol (river levee)	
0.5 – 4 %, medium, heavy	~70%	~10%		
0.15 – 1%, medium crude			~10%	
0.15 – 1%, heavy crude			~18%	

Compaction

• measured with soil penetrometer after weathering expts. (1 yr)

observations from worm assays

soil type	experimental conditions	observations
Arenosol (sandy)	 1 year weathering medium and heavy crude final concs. ~0.5 – 4% 	penetrometer values very low (<25 PSI) in all treatments
Gleysol (floodable)	 1 year weathering medium and heavy crude final concs. ~0.5 – 4% 	tendency to decrease with medium crude and increase with heavy crude, however all values < 90 PSI
Fluvisol (river levee)	 1 year weathering medium and heavy crude final concs. ~0.15 – 1% 	tendency to increase with medium and heavy, however all values < 70 PSI
Acrisol (red clay)	 without weathering extraheavy crude conc. 1% 	formation of hard compacted clumps in worm bioassay, trapped worms (increased mortality)

Plant Growth

- pasture planted by stolons
- cut every 2 mo. and above ground biomass measured

CONCLUSIONS

Impacts of petroleum contamination in soil are affected by:

- •Type of Petroleum:
 - →lighter crudes are more acutely toxic (but temporary)
 - →heavier crudes are more likely to impact fertility:
 - •polar groups lead to formation of HC laminates
 - →water repellency/soil moisture
 - →soil compaction
 - recovery may be very, very slow

CONCLUSIONS

Impacts of petroleum contamination in soil are affected by:

- •Type and abundance of soil clays:
 - smectites: high surface area, expansive (in brown-grey soils)
 - →reduce toxicity (low bioavailability)
 - \rightarrow very little water repellency (lots of reactive surface area)
 - →very little compaction (shrink-swell properties)
 - non-smectites: kaolinites, amorphous Fe/Al oxides low surface area, non-expansive (in red-clay soils)
 - →med-high toxicity (more bioavailability)
 - →med-high water repellency (less reactive surface area)
 - \rightarrow a lot or compaction (no shrink-swell properties)

CONCLUSIONS

Impacts of petroleum contamination in soil are affected by:

- •Type and abundance of soil clays:
 - very sandy soils: practically no clay (<1%)
 - →med-high toxicity (almost complete bioavailability)
 - →high water repellency (very little reactive surface area)
 - \rightarrow no compaction (absence of clays:

 \rightarrow basically no aggregates)

drrandocan@hotmail.com

