Evaluation of Bioremediation of Chlorinated Benzenes and Benzene by a Native Wetland Microbial Community and a Bioaugmented Anaerobic Culture

Michelle M. Lorah and Charles W. Walker U.S. Geological Survey, Baltimore, MD

in Cooperation with USEPA, Region III

Standard Chlorine of Delaware, Inc., Superfund Site

• Chemical plant built in 1965 to manufacture chlorinated benzenes

• Operated 1966-2002

• Leaky catchment basin (repaired 1976)

• Two major spills: 1981 (railroad tanker, 5,000 gal CB); 1986 (storage tanks-579,000 gal 14DCB and TCBs)

• Superfund site in 1987

Wetland Remedial Alternatives

- 1995 ROD stated treatment for soils and wetland sediments either by bioremediation or low temperature thermal desorption (LTTD)
 - Initial bioremediation treatability test with soil and sediment was not promising
 - ITTD was cost-prohibitive (>\$50 million)
- In situ chemical oxidation (ISCO) pilot test in wetland was not promising and had long-term adverse affect on vegetation (HGL, 2009)
- These problems and advances in bioremediation led to a second look at bioremediation

Objectives and Outline

- Wetland characterization
 - hydrogeology
 - groundwater contaminant distribution
- Natural attenuation in wetland (MNA)
- Potential for enhanced bioremediation
 - biostimulation
 - bioaugmentation-WBC-2 culture

Biodegradation Pathways

- Anaerobic reductive dechlorination
 - rate decreases with decreasing number of chlorines
 - monochlorobenzene recalcitrant
- Oxidation reaction pathways
 - typically aerobic
 - rate decreases with increasing number of chlorines

Conceptual model for chlorinated solvent contamination in wetland

(modified from Lorah et al., 2005)

Geochemical Evidence (Field Sampling)

Geochem evidence

Monitored Natural Attenuation or Enhanced MNA

Field Sampling

- Passive diffusion bags (PDBs) and dialysis samplers at about 45 sites
- 2 inch drivepoints at 13 sites (plus upland wells)
- 4-ft long porous membrane samplers (peepers) at 6 sites
- Sediment cores at 4 sites

Standard Chlorine of Delaware Wetland Sampling Sites-PDBs, Drivepoints

- Passive diffusion bags (PDBs) and dialysis samplers at 45 sites
- 2 inch drivepoints at 13 sites (plus upland wells)
- Monthly groundwater sampling at 4 sites
- Sediment cores at 2 monthly sites

Chloride, Sulfate- Spatial and Temporal

VOCs-PDBs, October 2011

Upland Wells, Oct . 2011

8 102 131 132 133 134 135 11 138 139 140 141 142 143 144

Contaminant distribution

Natural biodegradation potential (MNA)

Peepers at 6 sites

Microbial Populations from qPCR: Sediment and ISM

In Situ Microcosms

<text>

In Situ Microcosms Bio-Traps

GEO geochemistry: anions, VFAs

COC VOCs, redox

MICRO- with Bio-Sep

- Sample microbes
- Load with culture
- Load with contaminant ; ¹³C-VOC

Amendments i.e. donor, nutrients

Bio-Sep® beads provide a large surface area for microbial attachment

WBC-2 Degradation pathways and dechlorinators

Manchester et al., 2011

ISM Results: Redox and VOCs,LP6

Complete sulfate reduction and degradation of DCBs evident in WBC-2 treatment

ISM 2009 Results: ¹³C Site LP6

Chlorobenzene degradation by different pathways

WBC-2 13C

MNA 13C

1.E+00

Flow-through bioreactors

Anaerobic Fixed-Film Bioreactors

SCD Bioreactors- ORP

(median residence time~ 40 hr; pH~7.0-7.5)

SCD Bioreactors- Total CBs+Benzene

SCD Bioreactors- VOC Percent Removals (median residence time~ 36 hr; pH~7.0-7.5)

2013 SCD Bioreactors-High CBZs

MCB and benzene median removals = 80 % (about 85% at low initial total CBZ concentrations)

USGS Fate and Bioremediation Team

FAB Team:

Michelle Lorah **Charles Walker Michael Brayton** Anna Baker Jessica Teunis Mastin Mount Jessica Thompson Luke Myers Roberto Cruz Melody Flinchbaugh Andrew Reid **Emily Majcher**

CRADA Partner:

Geosyntec Consultants

http://md.water.usgs.gov/teams/fab/