

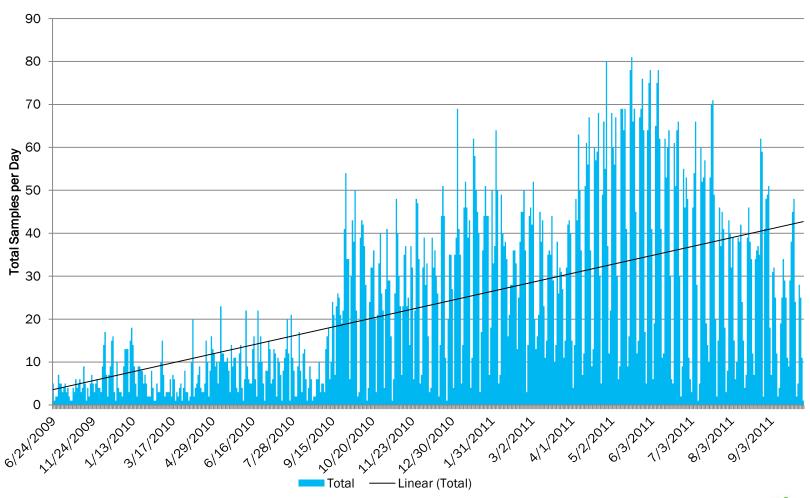
ENVIRONMENTAL DATA MANAGEMENT& SHALE GAS PROGRAMS

INTERNATIONAL PETROLEUM ENVIRONMENTAL CONFERENCE NOVEMBER 14, 2013 MARK HOLLINGSWORTH & DAN ALEXANDER

AGENDA

- Problem Statement
- Stakeholder Issues
- EQuIS Project Design
- Implementation of EQuIS
- Lessons Learned
- Key Benefits

PROBLEM STATEMENT


- Spreadsheets, Spreadsheets, and more Spreadsheets
 - Consultant provided tabulated lab data, property information on multiple spreadsheets, transmitted via email and web portal
 - CHK GIS mapped after internally processing spreadsheets
 - Data was Not database ready (unique identifiers had to be established in format)
- Drilling Program was growing to be the most active driller in the US
 - Concurrently baseline program moved to get farther ahead of the rigs
- Need to manage water quality complaints and associated data
 - Need data to make internal decisions and better understand water quality in generalized area
 - Better management of data increases company benefits based on informed decisions
- Need to store additional water source data internally
 - Ability to manage additional field sampling notes and field measurements
 - Ability to centrally store site specific documentation

MANAGING LARGE AMOUNTS OF DATA

Water Source Samples Collected Over Time

Chesapeake

STAKEHOLDER ISSUES

Effective Data Management

- Ability to manage large amounts of data
 - Understanding the uses of the data
- Building efficiency through reporting
 - Real time GIS Mapping capabilities

Data Migration

- Migrating data from previous formats to singular format
 - Understanding the changes and limitations of data migration

New Data Storage

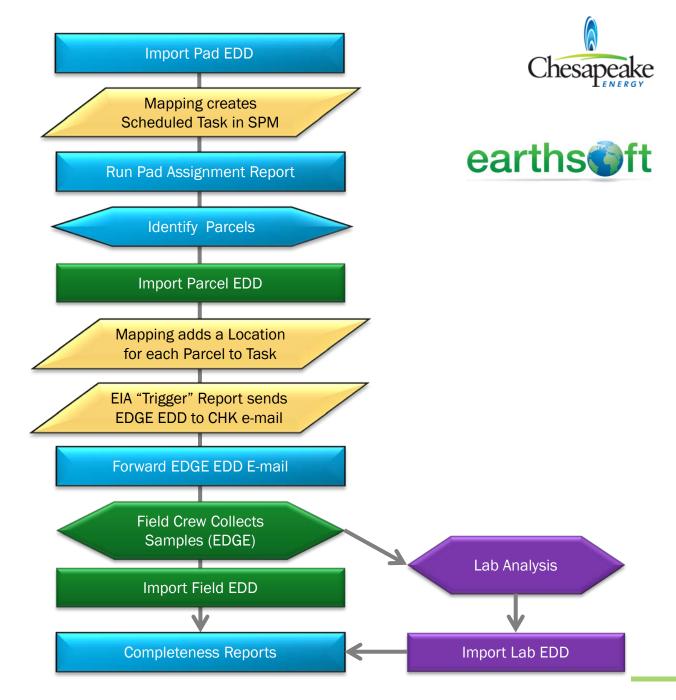
- Adjusting Process Work Flow
- Change of Management process (Running dual systems for verification)

Quality Control Mechanisms/ Assurances

- Ability to monitor and track progress/data completeness
- Costs
 - How to remain on task and budget

EQUIS PROJECT DESIGN

- Historical View of Baseline Water Sampling
 - Understanding different State Regulatory requirements and your data management needs
 - Data was collected and stored through Excel Spreadsheets no central repository
- Understanding proper data flow process
 - How does the complex process get mapped for a database?
 - > How will data be delivered to end user
 - Database formatted file (direct exported file) vs. PDF files or both?
- EQuIS Database Configuration
 - Building a new model for Baseline Water Sampling
 - Customized formats vs. Standardized formats
 - Sustainable use for years to come
- Using the EQuIS Tools for process timeline events
 - Using Sample Planning Module (SPM) for Pre-drill & Post-drill scheduling
 - Utilization of SPM Outlook-type calendar for scheduling
 - Using EQuIS Data Gathering Engine (EDGE) for field documentation


IMPLEMENTATION

- Building the right Project Team
 - Collaborative effort among consultants, Laboratories, EarthSoft and Chesapeake Energy
 - Weekly team meetings
 - Phased implementation (running test and production environments of data)
 - "All hands on deck" approach for timely implementation
 - Ability to make changes immediately to maintain data flow/input
 - Project Checklists with Action Items
- Developing Data Reporting Requirements
 - Internal Reporting needs
 - Quarterly matrices (KPIs)
 - External Reporting functionality
 - Exporting data to state databases (i.e. MSC)
- Evaluating Costs with a long term perspective
 - > Changed data models over time to standardized (out of the box) format

Chesapeake SPM / EDGE Workflow

CHK

EQuIS

Consultant

Laboratory

LESSONS LEARNED

- Dedicate Active Project Management
 - > Time invested up front will save considerable time later
- Take time to think through how data needs to be imported
 - > Will there be any delays on gap, historical and complaint data imports
 - What timeframe does data need to be imported (e.g. field EDD)
 - > Initial steep learning curve for the consultants
- Proper Management of Change Period
 - Use of parallel databases (TEST & PRODUCTION environments) during testing period
- Build in time for uncertainty and unknowns
 - Allow 10-20% of project time (dependent with size and scope of data migrating)
- Fully understand the project tasks/desired outcome
 - > Changed our Database structure from Customized to Standard (out of box) approach
- Focus on changeable topics
 - Don't focus on the "what if's"

CENTRALIZED DATA MANAGEMENT – KEY BENEFITS

By centrally managing all environmental data into a single storage facility, more sophisticated data analysis will be achievable, which leads to an improved technical/scientific understanding while enforcing comprehensive QA/QC procedures:

- Technical data quality objectives, including data validation and checking is standardized and managed centrally
- Electronic input and output of data improves data accuracy, efficiency and quality by reducing potential input errors during data transfer
- More efficient workflow and field monitoring procedures
- Data is timely (real time) and stored for multi matrices (e.g. Air, Soil, Ecology, etc.)
- Data is readily accessible to all stakeholders
- Proper data management system stores, processes, analyzes and reports project critical data necessary for both day-to-day project management and longer term strategic planning

Financial Value of Consistency

- Save time and money
- Ability to reevaluate existing sites easier
- Data sharing amongst offices

Increased Technical/Scientific understanding and time for advanced Data Analysis.

