

Geotech

Computer Systems, Inc.

Data Management for the New and Expected Baseline Sampling Rules

20th IPEC Conference

Dr. David W. Rich drdave@geotech.com

San Antonio, TX November 14, 2013

Introduction

- Petroleum project challenges
- Petroleum data challenges
- Types of petroleum environmental data
- Baseline sampling
- Example state sampling rules
- Colorado Rules 609 and 318A
- Future direction and discussion

Petroleum Project Challenges

Petroleum environmental projects from upstream to downstream have different needs:

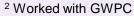
- Baseline samples should be taken prior to and after drilling
- Accidental spills during drilling may require sampling and analysis
- Hydraulic fracturing is now under great scrutiny from a number of angles: water supply, fluid composition, and disposal or re-use of frac fluids
- Unconventional resources such as coalbed and shale gases often involve the production of a large amount of water, which must be managed, and often discharge monitoring reports must be provided to regulators
- Transportation activities, such as by pipeline and truck, can result in spills with environmental impact
- Refining has its own set of environmental issues, such as monitoring of discharges and nearby groundwater and surface water

Petroleum Data Challenges

Petroleum environmental data provides special challenges:

- Handling on non-detected results
- Multiple dilutions to maintain a linear instrument response
- © Comparison to multiple, and often complex, regulatory limits and target levels
- Special handling of non-aqueous phase liquid data
- Potentially large amounts of data
- Inconsistent reporting of hydrocarbon ranges
- Often complex site geology

Baseline Sampling


- Program requirement Types
 - Voluntary Example: COGA
 - Mandatory Examples: COGCC, Ohio
- Timing
 - Pre-drilling
 - Post-drilling
- Reporting requirements
 - Agency
 - Operator
 - Landowner

Example State Sampling Rules

State	Agency	Summary of Rules	Reference
Alabama	State Oil and Gas Board of Al	Sampling apparently not required ¹	gsa.state.al.us/documents/misc_ogb/goldbook.pdf
Alaska	Alaska Oil and Gas	Sampling apparently not required	www.legis.state.ak.us/cgi-bin/folioisa.dll/stattx07/query
	Conservation Commission		=%5BJUMP:'AS3105030'%5D/doc/%7B@1%7D?firsthit
Arkansas	Arkansas Oil and Gas Comm.	Sampling apparently not required	aogc.state.ar.us/operator_requirements.htm
California	Division of Oil, Gas and Geothermal Resources	May be required by state supervisor	ftp://ftp.consrv.ca.gov/pub/oil/laws/PRC01.pdf
Colorado	Colorado Oil and Gas	Baseline sampling before and after drilling ²	cogcc.state.co.us/RR_HF2012/Groundwater/FinalRules/FinalR
	Conservation Commission		ule609-01092013.pdf
Kansas	Kansas Geological Survey	Baseline sampling voluntary	www.kcc.state.ks.us/conservation/kgs_baseline_groundwater_quality.pdf
Louisiana	Louisiana Dept. of Nat. Res.	Sampling apparently not required	dnr.louisiana.gov/assets/OC/43XIX_June2010.pdf
Ohio	Ohio Dept. of Natural Resources	Baseline sampling before drilling ²	oilandgas.ohiodnr.gov/laws-regulations/senate-bill-315
Oklahoma	Oklahoma Corp. Commission	Baseline sampling recommended	oklahomawatersurvey.org/?p=214
Pennsylvania	Pennsylvania Dept. of	No sampling requirement, but operators	stateimpact.npr.org/pennsylvania/tag/impact-fee/
	Environmental Protection	presumed responsible for pollution	
New Mexico	New Mexico Energy, Minerals	Sampling apparently not required	www.emnrd.state.nm.us/OCD/documents/SearchablePDFofOC
	and Natural Resources Dept.		DTitle19Chapter15created3-2-2012.pdf
New York	New York State Dept. of	Baseline sampling before drilling proposed,	www.dec.ny.gov/energy/47554.html
	Environmental Conservation	voluntary sampling in southern New York	
North Dakota	North Dakota Industrial Comm.	Sampling not required	www.dmr.nd.gov/oilgas/rules/rulebook.pdf
Texas	Railroad Commission of Texas	Sampling apparently not required, except City	info.sos.state.tx.us/pls/pub/readtac\$ext.ViewTAC?tac_view=4&
		of Fort Worth	ti=16&pt=1&ch=3&rl=Y
Utah	UT Div. of Oil, Gas and Mining	Sampling apparently not required	www.rules.utah.gov/publicat/code/r649/r649-003.htm
West Virginia	West Virginia Department of	No sampling requirement, but operators	www.legis.state.wv.us/WVcode/ChapterEntire.cfm?chap=22&a
	Environmental Protection	presumed responsible for pollution	rt=6A§ion=18
Wyoming	Wyoming Oil and Gas	Pre-drilling sampling recommended ¹	wogcc.state.wy.us/
	Conservation Commission		

¹ Working with Ground Water Protection Council ²

COGCC Rule 609

- Rule 609, and modifications to Rule 318A, were published by the Colorado Oil and Gas Conservation Commission (COGCC) in February, 2013, for permits issued after May 1, 2013
- These rules make Colorado the first state in the country to require pre- and post-drilling sampling of water sources near new oil and gas wells
- Consultants, labs, and software vendors have cooperated with COGCC to update the transfer of data to COGCC's database using COGCC's new XML or an Excel format

Rule 609 Sample Requirements

- Sampling required for new oil and gas wells, multi-site wells, and dedicated injection wells
- Installing of monitoring wells is <u>not</u> required
- Samples must be collected from up to four water sources within a half mile of proposed well location
- One pre-drill sample required with 12 months prior to setting conductor pipe
- Two post-drill samples required, one 6-12 months and one 5-6 years after drilling
- Data must be made publicly available on the COGCC website
- Rule 318A (Wattenberg Area) has slightly different requirements (one sample per quarter, one post-drill)

Baseline Sampling and Reporting Steps

- Determine locations
- Obtain landowner permission
- Take samples and field measurements
- Enter locations in COGCC website
- Obtain the Facility ID
- Import field measurements
- Obtain and import lab data
- Review data
- Export to COGCC format, with Facility ID
- Upload to the COGCC website
- Review submission online



COGCC Facility Information

- The first step on the state website is to upload the location
- The location is then given a Facility ID
- This should be recorded and added to the lab and field data before upload
- This can also be used on the COGCC website to retrieve and view the data

Typical Sample Location

- Typical compliance costs:
 - Sampling: \$2,500
 - Lab analysis: \$500 600
 - Isotopic analysis, if needed: \$300 400 more

Photo courtesy of Ben Baugh Olsson Associates

Container Labels

Rad Industries

Environmental Project Number

None

Sample No: MW-1 2009-08-01 0-0

Lab: XYZ Labs Location: MW-1
Sample Date: 08/01/2009 Time: 00:00

Analysis 8260A

Preservation: Cool to 4°

 Cooler Temp
 4
 Filtered:
 U nknown

 Sampler
 Container
 40 ml VO A Vials

Rad Industries

Environmental Project Number

None

Sample No: MW-1_2009-08-01_0-0

Lab: XYZ Labs Location: MW-1
Sample Date: 08/01/2009 Time: 00:00

Analysis 8270

Preservation: Cool to 4°

 CoolerTemp
 4
 Filtered:
 U nknown

 Sampler
 Container
 40 ml VO A Vials

Rad Industries

Environmental Project Number

None

Sample No: MW-1_2009-08-01_0-0

 Lab:
 XYZ Labs
 Location:
 MW-1

 Sample Date:
 08/01/2009
 Time:
 00:00

Analysis Method:Cd

Preservation: Cool to 4°

CoolerTemp 4 Filtered: Unknown

Sampler Container 1 Liter Clear Glass

Rad Industries

Environmental Project Number

None

Sample No: MW-1_2009-08-01_0-0

Lab: XYZ Labs Location: MW-1
Sample Date: 08/01/2009 Time: 00:00

Analysis 8260A

Preservation:

CoolerTemp 4 Filtered: Unknown

Sampler Container

Rad Industries

Environmental Project Number

None

Sample No: MW-1_2009-08-01_0-0

Lab: XYZ Labs Location: MW-1
Sample Date: 08/01/2009 Time: 00:00

Analysis Method:As

Preservation: Cool to 4°

Cooler Temp 4 Filtered: Unknown

Sampler Container 1 Liter Clear Glass

Rad Industries

Environmental Project Number

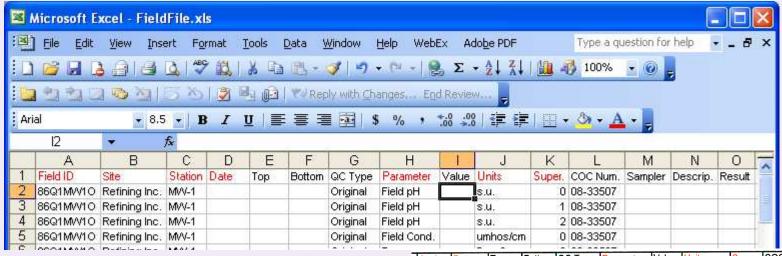
None

Sample No: MW-1_2009-08-01_0-0

Lab: XYZ Labs Location: MW-1
Sample Date: 08/01/2009 Time: 00:00

Analysis TO-13

Preservation: Cool to 4°


Cooler Temp 4 Filtered: Unknown

Sampler Container 1 Liter Amber Glass

©Enviro Data(F	9	DWR Q1	Cha	ain of		stoc	ly L	ab <u>X</u> ab Contact	YZ Labs			Lab Pho	Page 1 o	f1
Site Name Rad Industries Bill To: Phone Fax Address		ntact Name <u>1</u> ntact Phone o:			8260A		Method : As	MW-1 : Method : Cd	TO-13 : Pet. Hydro carb.					
City	City			Container	140	ı	ı	I	I					
State Zip	State	Zip	Pre	servative	HCL	=	a	2	•					
Sample ID	Wt/ Matrix Vol	Date-Time Collected		Number Containers	•	•				•	•	•	'	
MW-1_2009-08-01_0-0	Water	8/1/2009		6	X	Х	Х	X	Χ					
MW-3_2009-08-01_0-0	Water	8/1/2009		3	Х	Х			Х					
MW-3_2009-08-01_DUP_0-0	Water	8/1/2009		4	Х	X								
MW-3_2009-08-01_M\$_0-0	Water	8/1/2009		5	X	X	Х		Х					
MW-3_2009-08-01_MSD_0-0	Water	8/1/2009		4	X	X	X		Х					
\$B-2_2009-08-01_0-2	Water	8/1/2009		3	Х	X			Х					
\$B-2_2009-08-01_2-4	Water	8/1/2009		3	X	X			Х					
\$B-2_2009-08-01_4-6	Water	8/1/2009		3	X	X			X					
\$B-2_2009-08-01_6-8	Water	8/1/2009		3	X	X			X					
\$B-2_2009-08-01_8-10	Water	8/1/2009		2	X	X			X					
											1			
Remarks/Comments		Lab Use Only Temp of Cooler whe	4 5	coc	Tape was usi COC Tape w	present on oute proken on oute pews present of vas unbroken o	erpankage Y on sample Y on sample Y	N N	Re	ndicate Prope ceived within	good condition only Preserved Holding Time	Y N Y N	·	
Counted Do		Relinquished By	Date/Time	Received I	Эу	Date / Time	F	lelinquished By	Date	/ Time	Receive	d By	Date / Tin	ne
Sampled By														
									1					

Gathering Field Data

	Station	Date	Тор	Bottom	QC Type	Parameter	Value	Units	Super.	COC Num.	Sampler	Descrip.	Result
	MVV-1	4/22	-	-	Original	Field pH	8.1	s.u.	0	08-33507	owe	CLEAR	
	MW-1	4/22	_	-	Original	Field pH	7.9	s.u.	1	08-33507	pur	CLERR	
	MW-1	4/22	-	_	Original	Field pH	7.9	s.u.	2	08-33507	DWR	CLBAR	
	MW-1	4/22	_	_	Original	Field Cond.	43	umhos/cm	0	08-33507	DWR	CLEAR	
	MW-1	4/22	_	-	Original	Temp.	iγ	Deg C	0	08-33507	DUR	CCBAR	
	MVV-1	4/22		~	Duplicate	Field pH	7.8	s.u.	0	08-33507	OWR	CLOAR	
	MW-1	4/22		_	Duplicate	Field Cond.	44	umhos/cm	0	08-33507	DWR	CLOME	
	MW-1	4/22	-	_	Duplicate	Temp.	17	Deg C	0	08-33507	DWR	CCBAR	
	MW-3	4/22	-		Original	Field.pH~		s.u.	0	08-33507_	DWR		DRY
-	MW -3				Original	Field Cond.		umhos/cm	0	08-33507			
=	MW-3				Original	Temp.		Deg C	0	08-33507			

Geotech

Computer Systems, Inc.

Required Analyses

Required Analyses for Rules 318A and 609 pre-drilling samples

рН

Specific Conductance

Total Dissolved Solids*

Dissolved Gases (methane, ethane, propane)*

Total Alkalinity as CaCO3*

Bicarbonate Alkalinity as CaCO3*

Carbonate Alkalinity as CaCO3*

Major Anions (bromide*, chloride*, fluoride*, sulfate*, nitrate, nitrite as N, phosphorus)

Major Cations (calcium*, iron, magnesium*, manganese, potassium*, sodium*)

Other Elements (barium, boron, selenium, strontium)

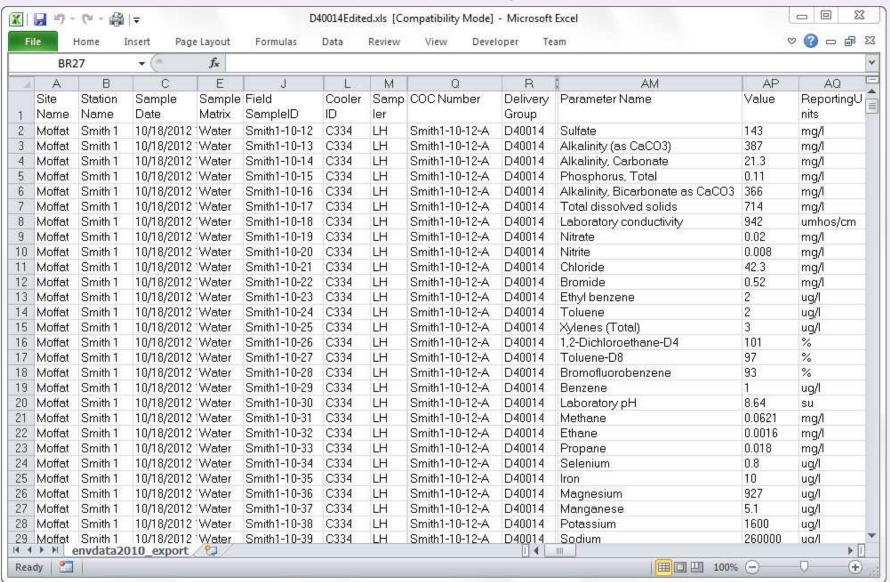
Bacteria (iron related, sulfate reducing, slime, coliform)

Total Petroleum Hydrocarbons*

BTEX (benzene, toluene, ethylbenzene, xylenes)*

Field Observations (odor, water color, sediment, bubbles, effervescence)

Gas Composition (if methane exceeds 1mg/L)


Stable Isotopes of methane and water (if methane exceeds 1 mg/L)

Notes:

- 1. All of the above analyses must be performed on pre-drilling samples. Analyses marked with an asterisk (*) are also required for post-drilling samples.
- 2. If free gas or a dissolved methane concentration greater than 1.0 milligram per liter (mg/l) is detected in a water sample, gas compositional analysis and stable isotope analysis of the methane (carbon and hydrogen 12C, 13C, 1H and 2H) must also be performed to determine gas type.
- 3. Field observations such as odor, water color, sediment, bubbles, and effervescence must also be documented.

Example Laboratory Deliverable

Geotech
Computer Systems, Inc.

Duplicates & Supersededs		d -Data Checking Options to tell Enviro Data how to help you Use Advanced Data Checker Default Values	Set Defaults Define values for required field	s that are not populated in the DTS file.		orting
Stations Match Stations by Regulatory Number Get Sample Event D, Station and Sample Numbers from Field Sample D			Filter Specific Data Content Configure		Da	ata
Samples Station Import File Parameters Parameter Aliases Use Site-Specific Values Use Global Values Use CAS Numbers Use Other Parameter D						
Parameters Parameter Aliases Use Site-Specific Values Use Global Values Use CAS Numbers Use Other Parameter D Calculated Parameters Calculate Value Options: Supersede Original Value Replace Original Value Analyses Analytic Methods Verify Analytic Methods Parameter Methods Help Reporting Units Import Wizard - Match Station Names # of Decimals Values This screen will help you match station names in the import file Add Station Add All Stations Add Station Alias Reset Site in import File Station in import File Change To	Stations	Match Stations by Regulator	y Number Get Sample Event ID, Station and Sa	ample Numbers from Field Sample ID]	
Calculated Parameters Calculate Value Options: Supersede Original Value Replace Original Value Analytic Methods Verify Analytic Methods Parameter Methods Help Reporting Units For Decimals Values This screen will help you match station names in the import file with those in the database. Site in Import File Station in Import File Change To Refining Inc. MW14 BN04 Refining Inc. B018 Refining Inc. CG12 Refining Inc. CG12 Refining Inc. CG12 Refining Inc. CM08 Refining Inc. CM09 Refining Inc. Refining Inc.	Samples	Set All Depths to Zero	✓ Allow Null Dates]	
# of Decimals Values This screen will help you match station names in the import file with those in the database. Site in Import File Station in Import File Change To Refining Inc. MW/14 m/N-100		Calculated Parameters	Calculate Value Options:	ginal Value Replace Original Value		
This screen will help you match station names in the import file with those in the database. Site in Import File Station in Import File Change To Refining Inc. MW14 mW100			Import Wizard - Match Station Names			
Site in Import File Station in Import File Change To Refining Inc.	Prost			e import file <u>A</u> dd Station Add All	Stations Add Station Alias	
BN04 Refining Inc.	<u>R</u> eset	_	<u> </u>			
MW-15 Refining Inc.					BN04 B007 BQ18 CF03 CG12 CL02 CM08 CM09 DL14 LabQCStation MW-100 MW-101 MW-102 MW-14	Refining Inc.

Geotech Computer Systems, Inc.

Quality Control - Completeness

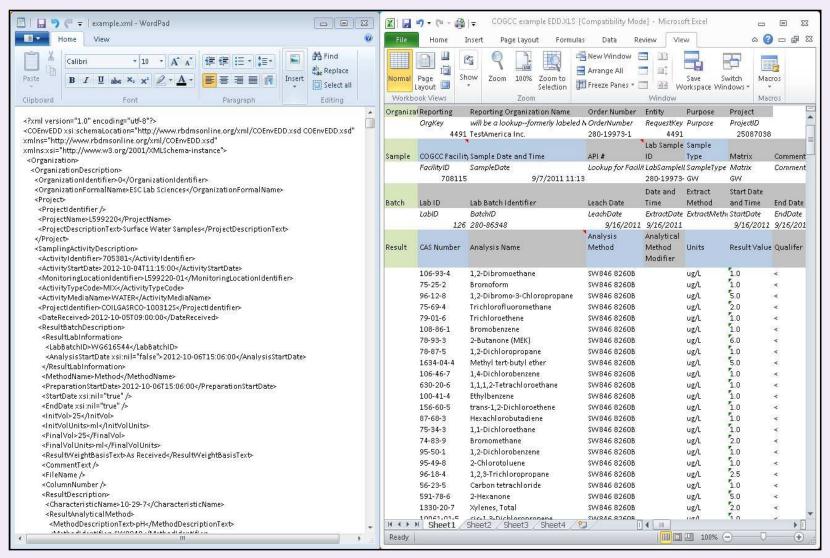
© Enviro Data®) COC# DV	VR Q1 (Completene	ss R	epor	† Lai	b <u>X</u> b Contact	YZ Labs		Lab Phon	Page 1 of	f 1
Client	W.O		TAT	0 0)ays							
Site Name Rad Industries Bill To:	Contact Contact	_		8		_						
Phone	Results To:			8260A	8270	As	공					
Fax	Phone			⊳	"							
Address	Fax											
City	Address		Container	7740	2	2	2					-
State Zip	City State	Zip	Preservative	HCL	None or	None or	None or					_
·					Uhhnovan	Uhbnown	Unknown					
Sample ID	Wr/ Matrix Vol QCCo	Date-Time de Collected	Number Filtered Containers									
MW-1_2009-08-01_O_0-0	0	8/1/2009	2	97	63	1	1					
MW-3_2009-08-01_DUP_0-0	DUP	8/1/2009	2	97	63	1	1					
MW-3_2009-08-01_MS_0-0	MS	8/1/2009	2	97	63	0	0					
MW-3_2009-08-01_MSD_0-0	MSD	8/1/2009	2	97	63	0	0					
MW-3_2009-08-01_O_0-0	0	8/1/2009	2	97	63	1	1					
SB-2_2009-08-01_O_0-2	0	8/1/2009	2	97	63	1	1					
SB-2_2009-08-01_O_2-4	0	8/1/2009	2	97	63	1	1					
SB-2_2009-08-01_O_4-6	0	8/1/2009	2	97	63	1	1					
SB-2_2009-08-01_O_6-8	0	8/1/2009	2	97	63	1	1					
SB-2_2009-08-01_O_8-10	0	8/1/2009	2	97	63	1	1					
<u> </u>			·									


Excel Table for Review

Statu 2 Statu	A cosstab Report ation Name mple Date Code eld Param	Reporting Units	C Federal MCL	D	Safe Drinking Water	F	G	Н		J	K		M	N	0
State 2 State 2 Sam 4 QC Field 6 Field 7 Inor 8 Bica	mple Date Code			Primary	_										
4 QC 5 Fiel 6 Fiel 7 Inor 8 Bica	Code eld Param				Standards	State Drinking Water Levels	MW-1	MW-1	MW-1	MW-1		Summ	nary Statistic	cs	
5 Fiel 6 Field 7 Inou	eld Param						2/8/1984	5/10/1984	9/14/1984	11/13/1984					
6 Field 7 Inor 8 Bica							0	0	0	0	Results	Non-Detects	Minimum	Maximum	Mean*
7 Ino	ld pH														
8 Bica		S.U.				7.1-8.4	7.70	7.10	7.10	7.20	4	0	7.1	7.7	7.2
	organics														
O Chic	arbonate	mg/l					520	550	470	560	4	0	470	560	525
_	loride	mg/l					250	260	230	190	4	0	190	260	232.5
0 Fluo	oride	mg/l					<1.00	<1.00	<1.00	<1.00	4	4	<1	<1	<1
11 Nitra		mg/l		2			<1.00	2.00	2.00	<1.00	4	2	<1	2	1.2
2 Sulf		mg/l	725	800	350	1000	1040	900	880	800	4	0	800	1040	905
_	etals														
	senic (As)	mg/l	0.025	0.1	0.002	0.03	<0.11	<0.11	<0.11	<0.06	4	4	<0.06	<0.11	<0.1
700	lcium	mg/l					180	170	203	180	4	0	170	203	183.2
6001	n (Ferrous)	mg/l		0.1			0.2	3.2	3.7	4.8	4	0	0.2	4.8	2.9
	ad (Pb)	mg/l	0.001	0.004	0.005	0.0025	<0.068	<0.068	0.14	<0.08	4	3	<0.068	0.14	0.06
	gnesium	mg/l					94	100	107	100	4	0	94	107	100.2
100	nganese	mg/l	0.0105	0.015	0.02	0.00225	0.077	0.066	0.076	0.086	4	0	0.066	0.086	0.07
1000	lybdenum	mg/l					0.02	<0.018	0.034	0.008	4	1	<0.018	0.034	0.01
100	tassium	mg/l				8	5.20	6.20	5.61	20	4	0	5.2	20	9.2
	lenium	mg/l					<0.10	<0.10	<0.10	<0.08	4	- 4	<0.08	<0.1	<0.1
The State of the S	dium	mg/l					390	430	390	460	4	0	390	460	417.5
ALC: N	otal - sol	mg/l					0.003	0.01	0.003	0.003	4	0	0.003	0.01	0.004
5 Oth		-													-
6944	tal Dissolved Solids	mg/l					2220	2230	2220	2200	4	0	2200	2230	2217.
7 Rad	diologic								27				2 22		NO.
	oss Alpha	pCVI	1				<10.00	<10.00	<10.00	<10.00	4	4	<10	<10	<10
	-226 - soluble	mg/l		- 1	0.4375		0.32	6	0.035	0.0525	3	0	0.035	0.32375	0.1
	-228 - soluble	mg/l				i i	0.59	0.36	0.33	0.27	4	0	0.27125	0.595	0.3
000	-230 - soluble	mg/l					0.025375	0.028875	0.041125	0.35	4	0	0.025375	0.35175	0.1
32									ĺ	*					ľ

Geotech

Computer Systems, Inc.



Selection and Output

Exporting COGCC Format

Data files courtesy of Arthur Koepsell, COGCC

Geotech

Computer Systems, Inc.

Uploading to COGCC

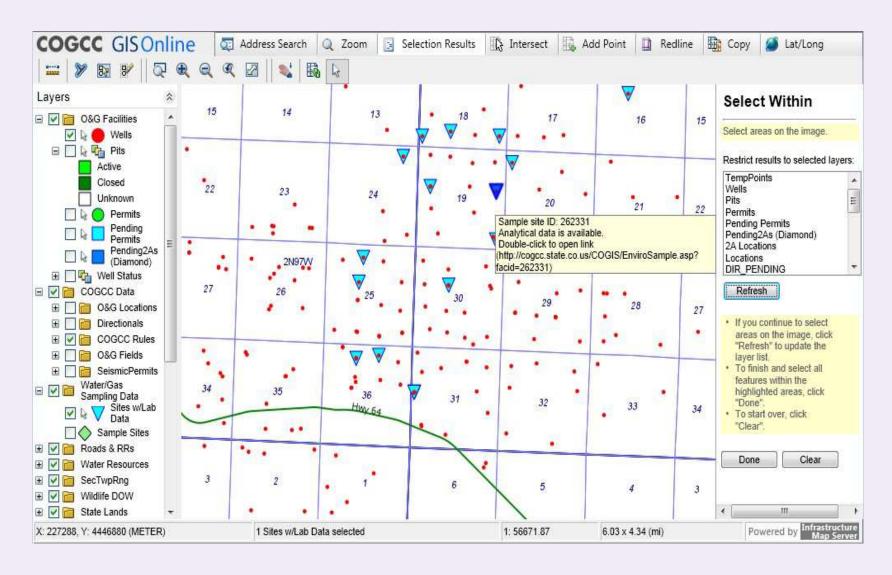

Data is uploaded using COGCC website

Image courtesy of Arthur Koepsell, COGCC

Map from COGCC website

Data from COGCC website

Sample ID:	457572	Sample Date:	9/11/2003	Mat	rix: WATER	1
		Sample Results for Samp	le # 457572 <u>- Minimize</u>			
Methodcode	ParamDescription		ResultValue	Units	DetectionLimit	Qualifier
UnSpec	BICARBONATE ALKALINITY	as CACO3	22900	mg/L		
UnSpec	CALCIUM		32	mg/L		
UnSpec	CARBONATE ALKALINITY A	S CACO3	ND	mg/L		U
UnSpec	CHLORIDE		1700	mg/L		
UnSpec	IRON		2.1	mg/L		
UnSpec	MAGNESIUM		29	mg/L		
UnSpec	MANGANESE		ND	mg/L		U
UnSpec	pH		. 8	SU		
UnSpec	POTASSIUM		85	mg/L		
UnSpec	RESISTIVITY		0.43	ohm/M		
UnSpec	SODIUM		9943	mg/L		
UnSpec	SPECIFIC GRAVITY		1.024	Ratio		
UnSpec	SULFATE		800	mg/L		
UnSpec	TOTAL DISSOLVED SOLIDS		35406	mg/L		

Future Direction and Discussion

- For COGCC, perhaps a way to download the Facility IDs and Sample IDs
- More data retrieval options from website
- Expansion to other states
- Use by the public
- Use in litigation
- Other issues?

Geotech

Computer Systems, Inc.

Data Management for the New and Expected Baseline Sampling Rules

20th IPEC Conference

Dr. David W. Rich drdave@geotech.com

San Antonio, TX November 14, 2013