

CONSULTING ENGINEERS AND SCIENTISTS

3

Water Resources May be Augmented by New Technology

"The single most frequent failure in the history of forecasting has been grossly underestimating the impact of technologies"

> Peter Schwartz from The Art of the Long View

ATER, ENERGY, ENVIRONMENT

Variation of Water Types

Table 1. Compositions of Seawater and Inland Brackish Sources - (mg/L)

Composition	Seawater Reference	Groundwater Tularosa Basin, NM	Groundwater Las Vegas, NV	Groundwater Hueco Bolson, TX	Wastewater Plant Stream Rio Rancho, NM
Na	10800	114	755	116	150
K	390	2	72	7	25
Ca	410	420	576	136	36
Mg	1300	163	296	33	51
a	19400	170	954	202	142
NO ₃	NR	10	31	NR	79
PO4	NR	0	NR	NR	20
SO4	2710	1370	2290	294	110
HCO ₃	143	270	210	190	110
SiO ₂	2.1	22	77	31	32
TDS	35300	2630	5270	1200	640

CONSULTING ENGINEERS AND SCIENTIS

Scale Forming Salts – Removal Targets

Salt	Saturation Concentration (mg/L) 8	
Calcium Carbonate (CaCO ₃)		
Calcium Fluoride (CaF ₂)	29	
Calcium Orthophosphate (CaHPO ₄)	68	
Calcium Sulfate (CaSO ₄)	680	
Strontium Sulfate (SrSO ₄)	146	
Barium Sulfate (BaSO ₄)	3	
Silica, amorphous (SiO ₂)	120	

ULTING ENGINEERS AND SCIENTISTS

Design Non-discharging Treatment Facilities

- Water saturated with gypsum
- Technology to remove saturated gypsum with RO and Ceramic Microfiltration (patented and trade secret)
- No Waste water is sold and gypsum is recovered for sale to gypsum mining concern

SMU Conference, 2008, Prentice Creel, PE

Connecting the Dots – Appropriation & Sale •Brackish groundwater – surface owner – brackish water in the •Treatment of brackish water for agriculture and potentially for the Monterey Shale Project – Grasslands Basin Drainers project •Tributary / Non- Tributary – Colorado example • Technology Choice is full dependant upon both input and

•The Market & Technical Drivers have both converged to enable considerable opportunity to those who connect the dots

Summary & Conclusions – What have we learned?

- Treatment becoming more refined
 - Customized to influent characteristics & output req.
 - Mobile or Centralized depending on volumes and transportation
 - Removal of scale forming compounds is key to success
 - Hardness & Metals
 - Carbonates
 - Silica
 - ✤ Barium
 - Sulfate/Carbonates
 - If scaling compounds removed, water use may be achieved without TDS removal in some cases (sodium chloride)

Heavy Metal Removal – Ceramic Microfiltration Presentation

